Advertisement for orthosearch.org.uk
Results 1 - 20 of 50
Results per page:
Bone & Joint Research
Vol. 5, Issue 9 | Pages 403 - 411
1 Sep 2016
Mrosek EH Chung H Fitzsimmons JS O’Driscoll SW Reinholz GG Schagemann JC

Objectives. We sought to determine if a durable bilayer implant composed of trabecular metal with autologous periosteum on top would be suitable to reconstitute large osteochondral defects. This design would allow for secure implant fixation, subsequent integration and remodeling. Materials and Methods. Adult sheep were randomly assigned to one of three groups (n = 8/group): 1. trabecular metal/periosteal graft (TMPG), 2. trabecular metal (TM), 3. empty defect (ED). Cartilage and bone healing were assessed macroscopically, biochemically (type II collagen, sulfated glycosaminoglycan (sGAG) and double-stranded DNA (dsDNA) content) and histologically. Results. At 16 weeks post-operatively, histological scores amongst treatment groups were not statistically different (TMPG: overall 12.7, cartilage 8.6, bone 4.1; TM: overall 14.2, cartilage 9.5, bone 4.9; ED: overall 13.6, cartilage 9.1, bone 4.5). Metal scaffolds were incorporated into the surrounding bone, both in TM and TMPG. The sGAG yield was lower in the neo-cartilage regions compared with the articular cartilage (AC) controls (TMPG 20.8/AC 39.5, TM 25.6/AC 33.3, ED 32.2/AC 40.2 µg sGAG/1 mg respectively), with statistical significance being achieved for the TMPG group (p < 0.05). Hypercellularity of the neo-cartilage was found in TM and ED, as the dsDNA content was significantly higher (p < 0.05) compared with contralateral AC controls (TM 126.7/AC 71.1, ED 99.3/AC 62.8 ng dsDNA/1 mg). The highest type II collagen content was found in neo-cartilage after TM compared with TMPG and ED (TM 60%/TMPG 40%/ED 39%). Inter-treatment differences were not significant. Conclusions. TM is a highly suitable material for the reconstitution of osseous defects. TM enables excellent bony ingrowth and fast integration. However, combined with autologous periosteum, such a biocomposite failed to promote satisfactory neo-cartilage formation. Cite this article: E. H. Mrosek, H-W. Chung, J. S. Fitzsimmons, S. W. O’Driscoll, G. G. Reinholz, J. C. Schagemann. Porous tantalum biocomposites for osteochondral defect repair: A follow-up study in a sheep model. Bone Joint J 2016;5:403–411. DOI: 10.1302/2046-3758.59.BJR-2016-0070.R1


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 113 - 113
1 Nov 2021
Başal Ö Ozmen O Deliormanli AM
Full Access

Introduction and Objective. Several in vitro studies have shed light on the osteogenic and chondrogenic potential of graphene and its derivatives. Now it is possible to combine the different biomaterial properties of graphene and 3D printing scaffolds produced by tissue engineering for cartilage repair. Owing to the limited repair capacity of articular cartilage and bone, it is essential to develop tissue-engineered scaffolds for patients suffering from joint disease and trauma. However, chondral lesions cannot be considered independently of the underlying bone tissue. Both the microcirculation and the mechanical support provided with bone tissue must be repaired. One of the distinctive features that distinguish graphene from other nanomaterials is that it can have an inductive effect on both bone and cartilage tissue. In this study, the effect of different concentrations of graphene on the in vivo performance of single-layer poly-ε-caprolactone based-scaffolds is examined. Our hypothesis is that graphene nanoplatelet- containing, robocast PCL scaffolds can be an effective treatment option for large osteochondral defect treatment. For this purpose, different proportions of graphene- containing (1%,3%,5%,10 wt%) PCL scaffolds were studied in a 5mm diameter osteochondral defect model created in the rabbit knee. Materials and Methods. In the study graphene-containing (1, 3, 5, 10 wt%), porous and oriented poly-ε-caprolactone-based scaffolds were prepared by robocasting method to use in the regeneration of large osteochondral defects. Methods: The scaffolds were implanted into the full-thickness osteochondral defect in a rabbit model to evaluate the regeneration of defect in vivo. For this purpose, twenty female New Zealand white rabbits were used and they were euthanized at 4 and 8 weeks of implantation. The reparative osteochondral tissues were harvested from rabbit distal femurs and then processed for gross appearance assessment, radiographic imaging, histopathological and immunohistochemical examinations. Results. Results revealed that, graphene- containing graft materials caused significant amelioration at the defect areas. Graphene-containing graft materials improved the fibrous, chondroid and osseous tissue regeneration compared to the control group. The expressions of bone morphogenetic protein-2 (BMP-2), collagen-1 (col-1), vascular endothelial growth factor (VEGF) and alkaline phosphatase (ALP) expressions were more prominent in graphene- containing PCL implanted groups. Results also revealed that the ameliorative effect of graphene increased by the elevation in concentration. The most prominent healing was observed in 10 wt% graphene-containing PCL based composite scaffold implanted group. Conclusions. This study demonstrated that graphene- containing, robocast PCL scaffolds has efficacy in the treatment of large osteochondral defect. Subchondral new bone formation and chondrogenesis were observed based on immunohistochemical examinations. 3D printed PCL platforms have great potential for the investigation of the osteochondral regeneration mechanism. The efficacy of graphene-containing PCL scaffolds on osteogenesis, vascularization, and mineralization was shown at different graphene concentrations at 4th and 8th weeks. Immunohistochemical studies showed statistical significance in the 5wt% and 10 wt% graphene-containing groups compared to the 1wt% and 3 wt% graphene-containing groups at the end of the eighth week


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 68 - 68
11 Apr 2023
Turnbull G Picard F Clarke J Shu W
Full Access

As arthroplasty demand grows worldwide, the need for a novel cost-effective treatment option for articular cartilage (AC) defects tailored to individual patients has never been greater. 3D bioprinting can deposit patient cells and other biomaterials in user-defined patterns to build tissue constructs from the “bottom-up,” potentially offering a new treatment for AC defects. The aim of this research was to create bioinks that can be injected or 3D bioprinted to aid osteochondral defect repair using human cells. Novel composite bioinks were created by mixing different ratios of methacrylated alginate (AlgMA) with methacrylated gelatin (GelMA). Chondrocytes or mesenchymal stem cells (MSCs) were then encapsulated in the bioinks and 3D bioprinted using a custom-built extrusion bioprinter. UV and double-ionic (BaCl2 and CaCl2) crosslinking was deployed following bioprinting to strengthen bioink stability in culture. Chondrocyte and MSC spheroids were also produced via 3D culture and then bioprinted to accelerate cell growth and development of ECM in bioprinted constructs. Excellent viability of chondrocytes and MSCs was seen following bioprinting (>95%) and maintained in culture over 28 days, with accelerated cell growth seen with inclusion of MSC or chondrocyte spheroids in bioinks (p<0.05). Bioprinted 10mm diameter constructs maintained shape in culture over 28 days, whilst construct degradation rates and mechanical properties were improved with addition of AlgMA (p<0.05). Composite bioinks were also injected into in vitro osteochondral defects (OCDs) and crosslinked in situ, with maintained cell viability and repair of osteochondral defects seen over a 14-day period. In conclusion we developed novel composite AlgMA/GelMA bioinks that can be triple-crosslinked, facilitating dense chondrocyte and MSC growth in constructs following 3D bioprinting. The bioink can be injected or 3D bioprinted to successfully repair in vitro OCDs, offering hope for a new approach to treating AC defects


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 108 - 108
11 Apr 2023
Turnbull G Picard F Clarke J Li B Shu W
Full Access

As arthroplasty demand grows worldwide, the need for a novel cost-effective treatment option for articular cartilage (AC) defects tailored to individual patients has never been greater. 3D bioprinting can deposit patient cells and other biomaterials in user-defined patterns to build tissue constructs from the “bottom-up,” potentially offering a new treatment for AC defects. The aim of this research was to create bioinks that can be injected or 3D bioprinted to aid osteochondral defect repair using human cells. Novel composite bioinks were created by mixing different ratios of methacrylated alginate (AlgMA) with methacrylated gelatin (GelMA). Chondrocytes or mesenchymal stem cells (MSCs) were then encapsulated in the bioinks and 3D bioprinted using a custom-built extrusion bioprinter. UV and double-ionic (BaCl2 and CaCl2) crosslinking was deployed following bioprinting to strengthen bioink stability in culture. Chondrocyte and MSC spheroids were also bioprinted to accelerate cell growth and development of ECM in bioprinted constructs. Excellent viability of chondrocytes and MSCs was seen following bioprinting (>95%) and maintained in culture over 28 days, with accelerated cell growth seen with inclusion of MSC or chondrocyte spheroids in bioinks (p<0.05). Bioprinted 10mm diameter constructs maintained shape in culture over 28 days, whilst construct degradation rates and mechanical properties were improved with addition of AlgMA (p<0.05). Composite bioinks were also injected into in vitro osteochondral defects (OCDs) and crosslinked in situ, with maintained cell viability and repair of osteochondral defects seen over a 14-day period. In conclusion we developed novel composite AlgMA/GelMA bioinks that can be triple-crosslinked, facilitating dense chondrocyte and MSC growth in constructs following 3D bioprinting. The bioink can be injected or 3D bioprinted to successfully repair in vitro OCDs, offering hope for a new approach to treating AC defects


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 2 | Pages 258 - 264
1 Feb 2007
Nagura I Fujioka H Kokubu T Makino T Sumi Y Kurosaka M

We developed a new porous scaffold made from a synthetic polymer, poly(DL-lactide-co-glycolide) (PLG), and evaluated its use in the repair of cartilage. Osteochondral defects made on the femoral trochlear of rabbits were treated by transplantation of the PLG scaffold, examined histologically and compared with an untreated control group. Fibrous tissue was initially organised in an arcade array with poor cellularity at the articular surface of the scaffold. The tissue regenerated to cartilage at the articular surface. In the subchondral area, new bone formed and the scaffold was absorbed. The histological scores were significantly higher in the defects treated by the scaffold than in the control group (p < 0.05). Our findings suggest that in an animal model the new porous PLG scaffold is effective for repairing full-thickness osteochondral defects without cultured cells and growth factors


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 8 | Pages 1110 - 1119
1 Aug 2009
Hepp P Osterhoff G Niederhagen M Marquass B Aigner T Bader A Josten C Schulz R

Perilesional changes of chronic focal osteochondral defects were assessed in the knees of 23 sheep. An osteochondral defect was created in the main load-bearing region of the medial condyle of the knees in a controlled, standardised manner. The perilesional cartilage was evaluated macroscopically and biopsies were taken at the time of production of the defect (T0), during a second operation one month later (T1), and after killing animals at three (T3; n = 8), four (T4; n = 8), and seven (T7; n = 8) months. All the samples were histologically assessed by the International Cartilage Repair Society grading system and Mankin histological scores. Biopsies were taken from human patients (n = 10) with chronic articular cartilage lesions and compared with the ovine specimens. The ovine perilesional cartilage presented with macroscopic and histological signs of degeneration. At T1 the International Cartilage Repair Society ‘Subchondral Bone’ score decreased from a mean of 3.0 (. sd. 0) to a mean of 1.9 (. sd. 0.3) and the ‘Matrix’ score from a mean of 3.0 (. sd. 0) to a mean of 2.5 (. sd. 0.5). This progressed further at T3, with the International Cartilage Repair Society ‘Surface’ grading, the ‘Matrix’ grading, ‘Cell Distribution’ and ‘Cell Viability’ grading further decreasing and the Mankin score rising from a mean of 1.3 (. sd. 1.4) to a mean of 5.1 (. sd. 1.6). Human biopsies achieved Mankin grading of a mean of 4.2 (. sd. 1.6) and were comparable with the ovine histology at T1 and T3. The perilesional cartilage in the animal model became chronic at one month and its histological appearance may be considered comparable with that seen in human osteochondral defects after trauma


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 9 | Pages 1236 - 1244
1 Sep 2006
Nishimori M Deie M Kanaya A Exham H Adachi N Ochi M

Bone marrow mesenchymal stromal cells were aspirated from immature male green fluorescent protein transgenic rats and cultured in a monolayer. Four weeks after the creation of the osteochondral defect, the rats were divided into three groups of 18: the control group, treated with an intra-articular injection of phosphate-buffered saline only; the drilling group, treated with an intra-articular injection of phosphate-buffered saline with a bone marrow-stimulating procedure; and the bone marrow mesenchymal stromal cells group, treated with an intra-articular injection of bone marrow mesenchymal stromal cells plus a bone marrow-stimulating procedure. The rats were then killed at 4, 8 and 12 weeks after treatment and examined. The histological scores were significantly better in the bone marrow mesenchymal stromal cells group than in the control and drilling groups at all time points (p < 0.05). The fluorescence of the green fluorescent protein-positive cells could be observed in specimens four weeks after treatment


Bone & Joint Research
Vol. 4, Issue 4 | Pages 56 - 64
1 Apr 2015
Lv YM Yu QS

Objectives. The major problem with repair of an articular cartilage injury is the extensive difference in the structure and function of regenerated, compared with normal cartilage. Our work investigates the feasibility of repairing articular osteochondral defects in the canine knee joint using a composite lamellar scaffold of nano-ß-tricalcium phosphate (ß-TCP)/collagen (col) I and II with bone marrow stromal stem cells (BMSCs) and assesses its biological compatibility. Methods. The bone–cartilage scaffold was prepared as a laminated composite, using hydroxyapatite nanoparticles (nano-HAP)/collagen I/copolymer of polylactic acid–hydroxyacetic acid as the bony scaffold, and sodium hyaluronate/poly(lactic-co-glycolic acid) as the cartilaginous scaffold. Ten-to 12-month-old hybrid canines were randomly divided into an experimental group and a control group. BMSCs were obtained from the iliac crest of each animal, and only those of the third generation were used in experiments. An articular osteochondral defect was created in the right knee of dogs in both groups. Those in the experimental group were treated by implanting the composites consisting of the lamellar scaffold of ß-TCP/col I/col II/BMSCs. Those in the control group were left untreated. Results. After 12 weeks of implantation, defects in the experimental group were filled with white semi-translucent tissue, protruding slightly over the peripheral cartilage surface. After 24 weeks, the defect space in the experimental group was filled with new cartilage tissues, finely integrated into surrounding normal cartilage. The lamellar scaffold of ß-TCP/col I/col II was gradually degraded and absorbed, while new cartilage tissue formed. In the control group, the defects were not repaired. Conclusion. This method can be used as a suitable scaffold material for the tissue-engineered repair of articular cartilage defects. Cite this article: Bone Joint Res 2015;4:56–64


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_8 | Pages 17 - 17
1 Apr 2017
Ramesh A Levingstone T Brady R Gleeson J Brama P O'Brien F
Full Access

Background. Articular cartilage has poor repair properties and poses a significant challenge in orthopaedics. Damage as a result of disease or injury frequently leads to formation of an osteochondral defect. Conventional repair methods, including allograft, autograft and microfracture, have a number of disadvantages in terms of cost, associated technical challenges and the requirement for multiple operations. A novel tri-layered scaffold developed in our lab, addresses this issue as it closely matches the structure and composition of osteochondral tissue. Methods. In vivo assessment was carried out in a caprine model by creating 6 mm × 6 mm defects in the medial femoral condyle and lateral trochlear ridge of each joint. Defects were implanted with the tri-layered scaffold and for comparison also with a market-leading scaffold, while some of defects were left empty, acting as a control. Assessment was carried out at 3 month, 6 month and 12 month time points. The quality of the repair at the various time points was graded macroscopically and microscopically by histological staining of the samples and also assessed using micro-CT (computed tomography) analysis. Results. From 3 to 6 months the tri-layered scaffold group showed improved macroscopic repair compared to the empty defect group. Greater levels of bone formation in the tri-layered scaffold group were evident on micro-CT evaluation, and this was confirmed by histological staining. Finally, at 12 months superior results were seen in the tri-layered scaffold group with formation of hyaline-like cartilage within the defect and regeneration of the subchondral bone. Conclusions. Positive results to date show that the tri-layered to be a promising method for cartilage repair and regeneration by promoting natural cartilage re-growth. It negates the need for other biological agents such as genes and growth factors by stimulating the native tissue osteochondral repair mechanism. Level of evidence. Animal research. Ethics Approval. The Ethics Committee of the University College Dublin (UCD) (AREC-P-11-31) approved this study and the Irish Government Department of Health (B100/4317) granted an animal license


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 93 - 93
1 Mar 2021
Haartmans M Cillero-Pastor B Emanuel K Eveque-Mourroux M Tuijthof G Heeren R Emans P
Full Access

Early detection of knee osteoarthritis (OA) is critical for possible preventive treatment, such as weight loss, physical activity and sports advice and restoring biomechanics, to postpone total knee arthroplasty (TKA). Specific biomarkers for prognosis and early diagnosis of OA are lacking. Therefore, in this study, we analyzed the lipid profiles of different tissue types within Hoffa's fat pad (HFP) of OA and cartilage defect (CD) patients, using matrix-assisted laser desorption ionization (MALDI) mass spectrometry imaging (MSI). The HFP has already been shown to play an important role in the inflammatory process in OA by prostaglandin release. Additionally, MALDI-MSI allows us to investigate on tissue lipid distribution at molecular level, which makes it a promising tool for the detection of disease specific biomarkers for OA development.

Samples of HFP were obtained of patients undergoing surgical treatment for OA (n=3) (TKA) or CD (n=3) (cartilage repair). In all cases, tissue was obtained without patient harm. HFP samples were washed in phosphate buffered saline (PBS) and snap-frozen directly after surgical dissection to remove redundant blood contamination and to prevent as much tissue degradation as possible. Tissue sections were cut at 15 µm thickness in a cryostat (Leica Microsystems, Wetzlar) and deposited on indium tin oxide glass slides. Norharmane (Sigma-Aldrich) matrix was sublimed onto the tissue using the HTX Sublimator (HTX Technologies, Chapel Hill). µMALDI-MSI was performed using Synapt G2Si (Waters) at 50 µm resolution in positive ion mode. MS/MS fragmentation was performed for lipid identification. Data were processed with in-house Tricks for MATLAB and analyzed using principle component analysis (PCA) and verlan

OA and CD HFP specific lipid profiles were revealed by MALDI-MSI followed by PCA and DA. With these analyses we were able to distinguish different tissue types within HFP of different patient groups. Further discriminant analysis showed HFP intra-tissue heterogeneity with characteristic lipid profiles specific for connective and adipose tissues, but also for synovial tissue and blood vessels, revealing the high molecular complexity of this tissue. As expected, lipid signals were lower at the site of the connective tissue, compared to the adipose tissue. In particular, tri-acyl glycerol, di-acyl glycerol, sphingomyelin and phosphocholine species were differently abundant in the adipose tissue of HFP of OA compared to CD.

To our knowledge, this is the first study comparing lipid profiles in HFP of OA patients with CD patients using MALDI-MSI. Our results show different lipid profiles between OA and CD patients, as well as intra-tissue heterogeneity within HFP, rendering MALDI-MSI as a useful technology for OA biomarker discovery. Future research will focus on expanding the number of subjects and the improvement of lipid detection signals.


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 8 | Pages 1099 - 1109
1 Aug 2007
Munirah S Samsudin OC Chen HC Salmah SHS Aminuddin BS Ruszymah BHI

Ovine articular chondrocytes were isolated from cartilage biopsy and culture expanded in vitro. Approximately 30 million cells per ml of cultured chondrocytes were incorporated with autologous plasma-derived fibrin to form a three-dimensional construct. Full-thickness punch hole defects were created in the lateral and medial femoral condyles. The defects were implanted with either an autologous ‘chondrocyte-fibrin’ construct (ACFC), autologous chondrocytes (ACI) or fibrin blanks (AF) as controls. Animals were killed after 12 weeks. The gross appearance of the treated defects was inspected and photographed. The repaired tissues were studied histologically and by scanning electron microscopy analysis.

All defects were assessed using the International Cartilage Repair Society (ICRS) classification. Those treated with ACFC, ACI and AF exhibited median scores which correspond to a nearly-normal appearance. On the basis of the modified O’Driscoll histological scoring scale, ACFC implantation significantly enhanced cartilage repair compared to ACI and AF. Using scanning electron microscopy, ACFC and ACI showed characteristic organisation of chondrocytes and matrices, which were relatively similar to the surrounding adjacent cartilage.

Implantation of ACFC resulted in superior hyaline-like cartilage regeneration when compared with ACI. If this result is applicable to humans, a better outcome would be obtained than by using conventional ACI.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_8 | Pages 68 - 68
1 Apr 2017
Moran C Levingstone T O'Byrne J O'Brien F
Full Access

Background

The gradient structure of osteochondral tissue, with bone, calcified and cartilage regions, challenges the design of biomaterials for defect repair. A novel biomimetic tri-layered collagen-based scaffold, designed to replicate these 3 anatomical layers, has been developed within our group and has shown success as an off-the-shelf product in treatment of focal defects in several animal models by recruiting host cells and directing them to form bone and cartilage in the requisite layers. This study aimed to elucidate the mechanism by which the extracellular matrix macromolecules in the scaffold directed stem cell differentiation in each layer.

Methods

Tri-layered scaffolds were divided into their three constituent layers. Each layer was individually seeded with rat mesenchymal stem cells (MSCs). Cell infiltration and proliferation, calcium production and sGAG formation were assessed up to 28 days.


The Journal of Bone & Joint Surgery British Volume
Vol. 84-B, Issue 4 | Pages 600 - 606
1 May 2002
Lietman SA Miyamoto S Brown PR Inoue N Reddi AH

Damage to articular cartilage is a common injury, for which there is no effective treatment. Our aims were to investigate the temporal sequence of the repair of articular cartilage and to define a critical-size defect.

Full-thickness defects were made in adult male New Zealand white rabbits. The diameter (1 to 4 mm) of the defects was varied in order to determine the effect that the size and depth of the defect had on its healing. The defects were made in the femoral groove of the knee with one defect per knee and eight knees per group. The tissues were fixed in formalin at days 3, 7, 14, 21, 28, 42, 84 and 126 after operation and the sections stained with Toluidine Blue. These were then examined and evaluated for several parameters including the degree of metachromasia and the amount of subchondral bone which had reformed in the defect.

The defects had a characteristic pattern of healing which differed at different days and for different sizes of defect. Specifically, the defects of 1 mm first peaked in terms of metachromasia at day 21, those of 2 mm at day 28, followed by defects of 3 mm and 4 mm. The healing of the subchondral bone was slowest in defects of 1 mm.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 75 - 75
1 Mar 2021
Mendes L Bosmans K Maréchal M Luyten F
Full Access

Joint surface restoration of deep osteochondral defects represents a significant unmet clinical need. Moreover, untreated lesions lead to a high rate of osteoarthritis. The current strategies to repair deep osteochondral defects such as osteochondral grafting or sandwich strategies combining bone autografts with ACI/MACI fail to generate long-lasting osteochondral interfaces. Herein, we investigated the capacity of juvenile Osteochondral Grafts (OCGs) to repair osteochondral defects in skeletally mature animals. With this regenerative model in view, we set up a new biological, bilayered, and scaffold-free Tissue Engineered (TE) construct for the repair of the osteochondral unit of the knee. Skeletally immature (5 weeks old) and mature (11 weeks old) Lewis rats were used. Cylindrical OCGs were excised from the intercondylar groove of the knee of skeletally immature rats and transplanted into osteochondral defects created in skeletally mature rats. To create bilayered TE constructs, micromasses of human periosteum-derived progenitor cells (hPDCs) and human articular chondrocytes (hACs) were produced in vitro using chemically defined medium formulations. These constructs were subsequently implanted orthotopically in vivo in nude rats. At 4 and 16 weeks after surgery, the knees were collected and processed for subsequent 3D imaging analysis and histological evaluation. Micro-computed tomography (µCT), H&E and Safranin O staining were used to evaluate the degree of tissue repair. Our results showed that the osteochondral unit of the knee in 5 weeks old rats exhibit an immature phenotype, displaying active subchondral bone formation through endochondral ossification, the absence of a tidemark, and articular chondrocytes oriented parallel to the articular surface. When transplanted into skeletally mature animals, the immature OCGs resumed their maturation process, i.e., formed new subchondral bone, partially established the tidemark, and maintained their Safranin O-positive hyaline cartilage at 16 weeks after transplantation. The bilayered TE constructs (hPDCs + hACs) could partially recapitulate the cascade of events as seen with the immature OCGs, i.e., the regeneration of the subchondral bone and the formation of the typical joint surface architecture, ranging from non-mineralized hyaline cartilage in the superficial layers to a progressively mineralized matrix at the interface with a new subchondral bone plate. Cell-based TE constructs displaying a hierarchically organized structure comprising of different tissue forming units seem an attractive new strategy to treat osteochondral defects of the knee


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 86 - 86
11 Apr 2023
Souleiman F Zderic I Pastor T Varga P Gueorguiev B Richards G Osterhoff G Hepp P Theopold J
Full Access

Osteochondral glenoid loss is associated with recurrent shoulder instability. The critical threshold for surgical stabilization is multidimensional and conclusively unknown. The aim of this work was to provide a well- measurable surrogate parameter of an unstable shoulder joint for the frequent anterior-inferior dislocation direction. The shoulder stability ratio (SSR) of 10 paired human cadaveric glenoids was determined in anterior-inferior dislocation direction. Osteochondral defects were simulated by gradually removing osteochondral structures in 5%-stages up to 20% of the intact diameter. The glenoid morphological parameters glenoid depth, concavity gradient, and defect radius were measured at each stage by means of optical motion tracking. Based on these parameters, the osteochondral stability ratio (OSSR) was calculated. Correlation analyses between SSR and all morphological parameters, as well as OSSR were performed. The loss of SSR, concavity gradient, depth and OSSR with increasing defect size was significant (all p<0.001). The loss of SSR strongly correlated with the losses of concavity gradient (PCC = 0.918), of depth (PCC = 0.899), and of OSSR (PCC = 0.949). In contrast, the percentage loss based on intact diameter (defect size) correlated weaker with SSR (PCC=0.687). Small osteochondral defects (≤10%) led to significantly higher SSR decrease in small glenoids (diameter <25mm) compared to large (≥ 25mm) ones (p ≤ 0.009). From a biomechanical perspective, the losses of concavity gradient, glenoid depth and OSSR correlate strong with the loss of SSR. Therefore, especially the loss of glenoidal depth may be considered as a valid and reliable alternative parameter to describe shoulder instability. Furthermore, smaller glenoids are more vulnerable to become unstable in case of small osteochondral loosening. On the other hand, the standardly used percentage defect size based on intact diameter correlates weaker with the magnitude of instability and may therefore not be a valid parameter for judgement of shoulder instability


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 142 - 142
4 Apr 2023
Ko J Lee E Cha H Im G
Full Access

In this study, we developed biocompatible adhesive which enables implanted chondrogenic-enhanced hASCs being strongly fixed to the lesion site of defected cartilage. The bioengineered mussel adhesive protein (MAP) was produced and purified using a bacterial expression system as previously reported. The cell encapsulated coacervate was formulated with two polyelectrolyte, the MAP and 723kDa hyaluronic acid (HA). MAP formed liquid microdroplets with HA and subsequently gelated into microparticles, which is highly viscous and strongly adhesive. The MAP with chondro-induced hASCs were implanted on the osteochondral defect created in the patellar groove/condyle of OA-induced rabbits. Rabbits were allocated to three different groups as follows: Group1 – Fibrin only; Group2 – Fibrin with hASCs (1.5×10. 6. chondro-induced hASCs); Group3; MAP with hASCs. The implanted cells were labeled with a fluorescent dye for in vivo visualization. After 35 days, fluorescent signals were more potently detected for MAP with hASCs group than Fibrin with hASCs group in osteochondral defect model. Moreover, histological assessment showed that MAP with hASCs group had the best healing and covered with hyaline cartilage-like tissue. The staining image shows that MAP with hASCs group were filled with perfectly differentiated chondrocytes. Although Fibrin with hASCs group had better healing than fibrin only group, it was filled with fibrous cartilage which owes its flexibility and toughness. As MAP with hASCs group has higher possibility of differentiating to complete cartilage, Fibrin only group and Fibrin with hASCs group have failed to treat OA by rehabilitating cartilage. In order to clarify the evidence of remaining human cell proving efficacy of newly developed bioadhesive, human nuclear staining was proceeded with sectioned rabbit cartilage tissue. The results explicitly showed MAP with hASCs group have retained more human cells than Fibrin only and Fibrin with hASCs groups. We investigated the waterproof bioadhesive supporting transplanted cells to attach to defect lengthily in harsh environment, which prevents cells from leaked to other region of cartilage. Collectively, the newly developed bio-adhesive, MAP, could be successfully applied in OA treatment as a waterproof bioadhesive with the capability of the strong adhesion to target defect sites


Bone & Joint Research
Vol. 6, Issue 2 | Pages 98 - 107
1 Feb 2017
Kazemi D Shams Asenjan K Dehdilani N Parsa H

Objectives. Mesenchymal stem cells have the ability to differentiate into various cell types, and thus have emerged as promising alternatives to chondrocytes in cell-based cartilage repair methods. The aim of this experimental study was to investigate the effect of bone marrow derived mesenchymal stem cells combined with platelet rich fibrin on osteochondral defect repair and articular cartilage regeneration in a canine model. Methods. Osteochondral defects were created on the medial femoral condyles of 12 adult male mixed breed dogs. They were either treated with stem cells seeded on platelet rich fibrin or left empty. Macroscopic and histological evaluation of the repair tissue was conducted after four, 16 and 24 weeks using the International Cartilage Repair Society macroscopic and the O’Driscoll histological grading systems. Results were reported as mean and standard deviation (. sd. ) and compared at different time points between the two groups using the Mann-Whitney U test, with a value < 0.05 considered statistically significant. Results. Higher cumulative macroscopic and histological scores were observed in stem cell treated defects throughout the study period with significant differences noted at four and 24 weeks (9.25, . sd. 0.5 vs 7.25, . sd. 0.95, and 10, . sd. 0.81 vs 7.5, . sd. 0.57; p < 0.05) and 16 weeks (16.5, . sd. 4.04 vs 11, . sd. 1.15; p < 0.05), respectively. Superior gross and histological characteristics were also observed in stem cell treated defects. Conclusion. The use of autologous culture expanded bone marrow derived mesenchymal stem cells on platelet rich fibrin is a novel method for articular cartilage regeneration. It is postulated that platelet rich fibrin creates a suitable environment for proliferation and differentiation of stem cells by releasing endogenous growth factors resulting in creation of a hyaline-like reparative tissue. Cite this article: D. Kazemi, K. Shams Asenjan, N. Dehdilani, H. Parsa. Canine articular cartilage regeneration using mesenchymal stem cells seeded on platelet rich fibrin: Macroscopic and histological assessments. Bone Joint Res 2017;6:98–107. DOI: 10.1302/2046-3758.62.BJR-2016-0188.R1


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 128 - 128
2 Jan 2024
Kelly D
Full Access

Our musculoskeletal system has a limited capacity for repair. This has led to increased interest in the development of tissue engineering and biofabrication strategies for the regeneration of musculoskeletal tissues such as bone, ligament, tendon, meniscus and articular cartilage. This talk will demonstrate how different musculoskeletal tissues, specifically cartilage, bone and osteochondral defects, can be repaired using emerging biofabrication and 3D bioprinting strategies. This will include examples from our lab where cells and/or growth factors are bioprinted into constructs that can be implanted directly into the body, to approaches where biomimetic tissues are first engineered in vitro before in vivo implantation. The efficacy of these different biofabrication strategies in different preclinical studies will be reviewed, and lessons from the relative successes and failures of these approaches to tissue regeneration will be discussed


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 72 - 72
1 Mar 2021
Kok A den Dunnen S Lamberts K Kerkhoffs G Tuijthof G
Full Access

Surgical microfracture is considered a first line treatment for talar osteochondral defects. Pain reduction, functional improvement and patient satisfaction are described to be 61–86% in both primary and secondary osteochondral defects. However, limited research is available whether improvement of the surgical technique is possible. We do know that the current rigid awls and drills limit the access to all locations in human joints and increase the risk of heat necrosis of bone. Application of a flexible water jet instrument to drill the microfracture holes can improve the reachability of the defect without inducing thermal damage. The aim of this study is to determine whether water jet drilling is a safe alternative compared to conventional microfracture awls by studying potential side effects and perioperative complications, as well as the quality of cartilage repair tissue in a caprine model. 6 mm diameter talar chondral defects were created bilaterally in 6 goats (12 samples). One defect in each goat was treated with microfracture holes created with conventional awls. The contralateral defect was treated with holes created with 5 second water jet bursts at a pressure of 50 MPa. The pressure was generated with a custom-made setup using an air compressor connected to a 300 litre accumulator that powered an air driven high-pressure pump (P160 Resato, Roden, The Netherlands, . www.resato.com. ). Postoperative complications were recorded. After 24 weeks, analyses were performed using the ICRS macroscopic score and the modified O'Driscoll histological score. Wilcoxon ranked sum tests were used to assess significant differences between the two instrument groups using each goat as its own control (p ≤ 0.05). One postoperative complication was signs of a prolonged wound healing with swelling and reluctance to weight bearing starting two days after surgery on the water jet side. Antibiotics were administered which resolved the symptoms. The median total ICRS score for the tali treated with water jets was 9,5 (range: 6–12) and 9 (range 2–11) for Observer 1 and 2 respectively; and for the tali treated conventionally this was 9,5 (range 5–11) and 9 range (2–10). The median total Modified O'Driscoll score for the tali treated with water jets was 15 (range: 7–17) and 13 (range: 3–20) for Observer 1 and 2 respectively; and for the tali treated conventionally was 13 (range: 11–21) and 15 (range: 9–20). No differences were found in complication rate or repair tissue quality between the two techniques. The results suggest that water jet drilling can be a safe alternative for conventional microfracture treatment. Future research and development will include the design of an arthroscopic prototype of the water jet drill. The focus will be on stability in nozzle positioning and minimized sterile saline consumption to further the decrease the risk of soft tissue damage


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 17 - 17
2 Jan 2024
Ramos-Díez S Camarero-Espinosa S
Full Access

Articular cartilage is a multi-zonal tissue that coats the epiphysis of long bones and avoids its wear during motion. An unusual friction could micro-fracture this connective membrane and progress into an osteochondral defect (OD), where the affected cartilage suffers inflammation, fibrillation, and forfeiture of its anisotropic structure. Clinical treatment for ODs has been focused on micro-fracture techniques, where the defect area is removed and small incisions are performed in the subchondral bone, which allows the exudation of mesenchymal stem cells (hMSCs) to the abraded zone. However, hMSCs represent less than 0.01% of the total cell population and are not able to self-organise coherently, so the treatments fail in the long term. To select, support and steer hMSCs from the bone marrow into a specific differentiation stage, and recreate the cartilage anisotropic microenvironment, multilayer dual-porosity 3D-printed scaffolds were developed. Dual-porosity scaffolds were printed using prepared inks, containing specific ratios of poly-(d,l)lactide-co-caprolactone copolymer and gelatine microspheres of different diameters, which acted as sacrificial micro-pore templates and were leached after printing. The cell adhesion capability was investigated showing an increased cell number in dual-porosity scaffolds as compared to non-porous ones. To mimic the stiffness of the three cartilage zones, several patterns were designed, printed, and checked by dynamic-mechanical analysis under compression at 37 ºC. Three patterns with specific formulations were chosen as candidates to recreate the mechanical properties of the cartilage layers. Differentiation studies in the selected scaffolds showed the formation of mature cartilage by gene expression, protein deposition and biomolecular analysis. Given the obtained results, designed scaffolds were able to guide hMSC behaviour. In conclusion, biocompatible, multilayer and dual-porosity scaffolds with cell entrapment capability were manufactured. These anisotropic scaffolds were able to recreate the physical microenvironment of the natural cartilage, which in turn stimulated cell differentiation and the formation of mature cartilage. Acknowledgments: This work was supported by the EMAKIKER grant