Advertisement for orthosearch.org.uk
Results 1 - 4 of 4
Results per page:
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 14 - 14
4 Apr 2023
Luk J
Full Access

In this study, we aimed to investigate tibiofemoral and allograft loading parameters after OCA transplantation using tibial plateau shell grafts to characterize the clinically relevant biomechanics that may influence joint kinematics and OCA osseointegration after transplantation. The study was designed to test the hypothesis that there are significant changes in joint loading after tibial plateau OCA transplantation that may require unique post-operative rehabilitation regimens in patients to restore balance in the knee joint. Fresh-frozen cadaveric knees (n=6) were thawed and mounted onto a 6 DOF KUKA robot. Specimens were size matched to +2 mm for the medial-to-lateral width of the medial tibial hemiplateaus. Three specimens served as allograft recipient knees and three served as donor knees. Recipient knees were first tested in their native state and then tested with size-matched medial tibial hemiplateau shell grafts (n=3) prepared from the donor knees using custom-cut tab-in-slot and subchondral drilling techniques. Tekscan sensors were placed in the joint spaces to evaluate the loading conditions under 90N biaxial loading at full extension of the knee before and after graft placement. The I-Scan system used in conjunction analyzed the total force, pressure distribution, peak pressure, and center of force within the joint space. Data demonstrated significant difference (p<0.05) in joint space loading after graft implantation compared to controls in both lateral and medial tibial plateaus. The I-Scan pressure mapping system displayed changes in femoral condylar contact points as well. The results demonstrated that joint space loading was significantly different (p<0.05) between all preoperative and postoperative cadaveric specimens. Despite the best efforts to size match grafts, slight differences in the host's joint geometry resulted in shifts of contact areas between the tibial plateau and femoral condyle therefore causing either an increase or decrease in pressure measured by the sensor. This concludes that accuracy in graft size matching is extremely important to restoring close to normal loading across the joint and this can be further ensured through postoperative care customized to the patient after OCA surgery


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 16 - 16
4 Apr 2023
Luk J
Full Access

Despite the growing success of OCA transplantation in treating large articular cartilage lesions in multiple joints, revisions and failures still occur. While preimplantation subchondral drilling is intended to directly decrease allograft bioburden and has been associated with significant improvements in outcomes after OCA transplantation, the effects of size, number, and spacing of subchondral bone drill sites have not been fully evaluated. This study aimed to investigate the effects of drill size with or without pulse-lavage of OCA subchondral bone by quantifying remnant marrow elements using histomorphometry. With IRB and ACUC approvals, human and canine OCAs were acquired for research purposes. Portions of human tibial plateau OCAs acquired from AATB-certified tissue banks that would otherwise be discarded were recovered and sectioned into lateral and medial hemiplateaus (n=2 each) with a thickness of 7 mm. Canine femoral condyles and tibial plateaus were split into lateral and medial components with a thickness of 7 mm (n=8). Using our clinical preimplantation preparation protocol, holes were drilled into the subchondral bone of each condyle and hemiplateau OCA using either 1.6 mm OD or 3.2 mm OD drill bits from the cut surface to the cortical subchondral bone plate. One femoral condyle and one hemiplateau per drill bit size were pulse-lavaged while the corresponding OCAs were not. The mean total %-fill remaining marrow elements for each treatment group was calculated. Little to no quantifiable bone marrow element retention was noted to remain within the subchondral bone of human or canine OCA specimens after subchondral drilling of allograft bone with either drill bit size evaluated and with or without pulse-lavage. The %-fill was consistent across zones, ranging from 1-5%. This project was designed to provide a preliminary histologic evaluation of the effects of drill size on OCA preimplantation preparation efficacy based on amount of remaining bone marrow elements in human and canine femoral condyle and tibial plateau specimens. Based on these initial findings, choice of drill bit size for OCA subchondral drilling may need to be based on the associated biomechanical effects rather than effects on donor bone marrow element removal


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 46 - 46
1 Nov 2021
Luk J Bozynski C Stoker A Stannard J Teixeiro E Cook J
Full Access

Introduction and Objective. Osteochondral allograft (OCA) transplants have been used clinically for more than 40 years as a surgical option for joint restoration, particularly for young and active patients. While immediate graft rejection responses have not been documented, it is believed that the host's immunological responses may directly impact OCA viability, incorporation, integrity, and survival, and therefore, it is of the utmost importance to further optimize OCA transplantation outcomes. The influences of sub-rejection immune responses on OCA transplantation failures have not been fully elucidated therefore aimed to further characterize cellular features of OCA failures using immunohistochemistry (IHC) in our continued hopes for the successful optimization of this valuable surgical procedure. Materials and Methods. With IRB approval, osteochondral tissues that were resected from the knee, hip, and ankle of patients undergoing standard-of-care revision surgeries (N=23) to treat OCA failures and tissues from unused portions of OCAs (N=7) that would otherwise be discarded were recovered. Subjective histologic assessments were performed on hematoxylin and eosin-stained and toluidine blue-stained sections by a pathologist who was blinded to patient demographics, outcomes data, and tissue source. IHC for CD3, CD8, and CD20 were performed to further characterize the and allow for subjective assessment of relevant immune responses. Results. Eleven (48%) of the failed OCAs had aggregates of CD3+, CD8+, and CD20+ lymphocytes around small blood vessels in the bone marrow spaces and adipose/collagenous tissue of the allograft, while the non-implanted healthy control OCA tissues did not show any evidence of inflammation. The remaining failed OCAs (52%) did not show a similar pattern of T- and B-cell infiltrates around blood vessels. Other histologic abnormalities associated with failed OCAs included avascular necrosis, subchondral micro and macro fractures, subchondral collapse, bacterial infection, and/or articular cartilage erosion or delamination. Conclusions. The results from the present study support this possibility in that mixed aggregates of CD3+, CD8+, and CD20+ lymphocytes were observed around small blood vessels in approximately half of the failed OCAs. This potentially cytotoxic immune response may have contributed to the lack of functional survival of the OCA noted in these cases, and warrants further investigation as a possible failure mechanism that may be mitigated using post-transplantation management strategies


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 15 - 15
4 Apr 2023
Luk J
Full Access

Many factors have been reported to affect the functional survival of OCA transplants, including chondrocyte viability at time of transplantation, rate and extent of allograft bone integration, transplantation techniques, and postoperative rehabilitation protocols and adherence. The objective of this study was to determine the optimal subchondral bone drilling technique by evaluating the effects of hole diameter on the material properties of OCAs while also considering total surface area for potential biologic benefits for cell and vascular ingrowth. Using allograft tissues that would be otherwise discarded in combination with deidentified diagnostic imaging (MRI and CT), a model of a large shell osteochondral allograft was recreated using LS-PrePost and FEBio based on clinically relevant elastic material properties for cortical bone, trabecular bone, cartilage, and hole ingrowth tissue. The 0.8 mesh size model consisted of 4 mm trabecular bone, 4 mm cortical bone, and 3 mm cartilage sections that summed to a cross-sectional area of 1600 mm2 (40 mm x 40 mm). Holes were modeled to be 4mm deep in relation to clinical practice where holes are drilled from the deep margin of subchondral trabecular bone to the cortical subchondral bone plate. To test the biomechanic variations between drill hole sizes, models with hole sizes pertinent to standard-of-care commercially available orthopaedic drill sizes of 1.1mm, 2.4 mm, or 4.0 mm holes were loaded across the top surface over a one second duration and evaluated for effective stress, effective strain, 1st principal strain, and 3rd principal strain in compressive conditions. Results measured effective stress and strain and 1st and 3rd principal strain increased with hole depth. The results of the present FEA modeling study indicate that the larger 4.0 mm diameter holes were associated with greater stresses and strains within OCA shell graft, which may render the allograft at higher risk for mechanical failure. Based on these initial results, the smaller diameter 2.4 mm and 1.1 mm holes will be further investigated to determine optimal number, configuration, and depth of subchondral drilling for OCA preparation for transplantation