Advertisement for orthosearch.org.uk
Results 1 - 3 of 3
Results per page:
Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_8 | Pages 1 - 1
1 Aug 2022
Nicholson T Foster N Haj AE Ede MN Jones S
Full Access

We previously reported that osteoblasts at the curve apex in adolescent idiopathic scoliosis (AIS) exhibit a differential phenotype, compared to non-curve osteoblasts(1). However, the Hueter-Volkmann principle on vertebral body growth in spinal deformities (2) suggests this could be secondary to altered biomechanics. This study examined whether non-curve osteoblasts subjected to mechanical strain resemble the transcriptomic phenotype of curve apex osteoblasts.

Facet spinal tissue was collected perioperatively from three sites, (i) the concave and (ii) convex side at the curve apex and (iii) from outside the curve (non-curve) from six AIS female patients (age 13–18 years; NRES 19/WM/0083). Non-curve osteoblasts were subjected to strain using a 4-point bending device. Osteoblast phenotype was determined by RNA sequencing and bioinformatic pathway analysis.

RNAseq revealed that curve apex osteoblasts exhibited a differential transcriptome, with 1014 and 1301 differentially expressed genes (DEGs; p<0.05, fold-change >1.5) between convex/non-curve and concave/non-curve sites respectively. Non-curve osteoblasts subjected to strain showed increased protein expression of the mechanoresponsive biomarkers COX2 and C-Fos. Comparing unstimulated vs strain-induced non-curve osteoblasts, 423 DEGs were identified (p<0.05, fold-change >1.5). Of these DEGs, only 5% and 6% were common to the DEGs found at either side of the curve apex, compared to non-curve cells. Bioinformatic analysis of these strain-induced DEGs revealed a different array of canonical signalling pathways and cellular processes, to those significantly affected in cells at the curve apex.

Mechanical strain of AIS osteoblasts in vitro did not induce the differential transcriptomic phenotype of AIS osteoblasts at the curve apex.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_1 | Pages 2 - 2
23 Jan 2023
Newton Ede M Pearson MJ Philp AM Cooke ME Nicholson T Grover LM Jones SW
Full Access

To determine whether spinal facet osteoblasts at the curve apex display a different phenotype to osteoblasts from outside the curve in patients with adolescent idiopathic scoliosis (AIS). Intrinsic differences in the phenotype of spinal facet bone tissue and in spinal osteoblasts have been implicated in the pathogenesis of AIS. However, no study has compared the phenotype of facet osteoblasts at the curve apex with the facet osteoblasts from outside the curve in patients with AIS. Facet bone tissue was collected from three sites, the concave and convex side at the curve apex and from outside the curve from three female patients with AIS (aged 13–16 years). Micro-CT analysis was used to determine the density and trabecular structure. Osteoblasts were then cultured from the sampled bone. Osteoblast phenotype was investigated by assessing cellular proliferation (MTS assay), cellular metabolism (alkaline phosphatase and Seahorse Analyser), bone nodule mineralisation (Alizarin red assay), and the mRNA expression of Wnt signalling genes (quantitative RT-PCR). Convex bone showed greater bone mineral density and trabecular thickness than did concave bone. The convex side of the curve apex exhibited a significantly higher proliferative and metabolic phenotype and a greater capacity to form mineralised bone nodules than did concave osteoblasts. mRNA expression of SKP2 was significantly greater in both concave and convex osteoblasts than in non-curve osteoblasts. The expression of SFRP1 was significantly downregulated in convex osteoblasts compared with either concave or non-curve. Intrinsic differences that affect osteoblast function are exhibited by spinal facet osteoblasts at the curve apex in patients with AIS


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXVII | Pages 48 - 48
1 Jun 2012
Moreau A Yuan Q Akoume M Karam N Taheri M Bouhanik S Rompre P Bagnall K Labelle H Poitras B Rivard C Grimard G Parent S
Full Access

Introduction. From the many human studies that attempt to identify genes for adolescent idiopathic scoliosis (AIS), the view emerging is that AIS is a complex genetic disorder with many predisposing genes exhibiting complex phenotypes through environmental interactions. Although advancements in genomic technology are transforming how we undertake genetic and genomic studies, only some success has been reached in deciphering complex diseases such as AIS. Moreover, the present challenge in AIS research is to understand the causative and correlative effects of discovered genetic perturbations. An important limitation to such investigations has been the absence of a method that can easily stratify patients with AIS. To overcome these challenges, we have developed a functional test that allows us to stratify patients with AIS into three functional subgroups, representing specific endophenotypes. Interestingly, in families with multiple cases of AIS, a specific endophenotype is shared among the affected family members, indicating that such a transmission is inherited. Moreover, increased vulnerability to AIS could be attributable to sustained exposure to osteopontin (OPN), a multifunctional cytokine that appears to be at the origin of the Gi-coupled receptor signalling dysfunction discovered in AIS. We examined the molecular expression profiles of patients with AIS and their response to OPN. Methods. Osteoblasts isolated from patients with AIS were selected for each functional subgroup and compared with osteoblasts obtained from healthy matched controls. We used the latest gene chip human genome array Affymetrix (HuU133 Plus 2.0 array) that allows for the analysis of the expression level of 38 000 well characterised human genes. Raw data were normalised with robust multiarray analysis method. Statistical analysis was done by the EB method with FlexArray software. Selection criteria for in-depth analysis include the magnitude of change in expression (at least □} 3-fold) and 5% false discovery rate as stringency selection. Validation of selected candidate genes was done by qPCR and at the protein level by Western blot and ELISA methods. Plasma OPN concentrations were measured by ELISA on a group of 683 consecutive patients with AIS and were compared with 262 healthy controls and 178 asymptomatic offspring, born from at least one scoliotic parent, and thus considered at risk of developing the disorder. The regulation of OPN signalling pathway in normal and AIS cells were validated in vitro by cellular dielectric spectroscopy (CDS). Results. Of 38 000 human genes tested, we have found eight genes specifically associated with the functional subgroup 1, 16 genes with the functional subgroup 2, and 11 genes with the functional subgroup 3. Interestingly, only 19 genes were shared and affected to the same extent in all AIS functional subgroups exhibiting a similar curve pattern (double major), suggesting their role in the formation of this curve pattern. Indeed, most of these genes encode for regulatory proteins such as transcription factors regulating axial skeleton, somite development, and extracellular matrix proteins. Mean plasma OPN concentrations were significantly increased in patients with AIS and correlated with disease severity. Increased plasma OPN concentrations were also detected in the asymptomatic at-risk group, suggesting that these changes precede scoliosis onset. CDS experiments clearly showed that OPN exposure triggers a Gi-coupled receptor signalling dysfunction, which is exacerbated by oestrogens. Conclusions. Our data further support our functional method of stratification of patients with AIS and allow the identification of genes triggering scoliosis onset versus those predisposing to the development of a specific curve pattern. Furthermore, our clinical and experimental data show that OPN is essential for scoliosis onset and curve progression, thus offering a first molecular concept to explain the pathomechanism leading to the asymmetrical growth of the spine in AIS. Acknowledgments. This research project was supported by grants from La Fondation Yves Cotrel de l'Institut de France, Canadian Institutes of Health Research, and Paradigm Spine LLC