Advertisement for orthosearch.org.uk
Results 1 - 20 of 20
Results per page:
The Bone & Joint Journal
Vol. 102-B, Issue 2 | Pages 162 - 169
1 Feb 2020
Hoellwarth JS Tetsworth K Kendrew J Kang NV van Waes O Al-Maawi Q Roberts C Al Muderis M

Aims. Osseointegrated prosthetic limbs allow better mobility than socket-mounted prosthetics for lower limb amputees. Fractures, however, can occur in the residual limb, but they have rarely been reported. Approximately 2% to 3% of amputees with socket-mounted prostheses may fracture within five years. This is the first study which directly addresses the risks and management of periprosthetic osseointegration fractures in amputees. Methods. A retrospective review identified 518 osseointegration procedures which were undertaken in 458 patients between 2010 and 2018 for whom complete medical records were available. Potential risk factors including time since amputation, age at osseointegration, bone density, weight, uni/bilateral implantation and sex were evaluated with multiple logistic regression. The mechanism of injury, technique and implant that was used for fixation of the fracture, pre-osseointegration and post fracture mobility (assessed using the K-level) and the time that the prosthesis was worn for in hours/day were also assessed. Results. There were 22 periprosthetic fractures; they occurred exclusively in the femur: two in the femoral neck, 14 intertrochanteric and six subtrochanteric, representing 4.2% of 518 osseointegration operations and 6.3% of 347 femoral implants. The vast majority (19/22, 86.4%) occurred within 2 cm of the proximal tip of the implant and after a fall. No fractures occurred spontaneously. Fixation most commonly involved dynamic hip screws (10) and reconstruction plates (9). No osseointegration implants required removal, the K-level was not reduced after fixation of the fracture in any patient, and all retained a K-level of ≥ 2. All fractures united, 21 out of 22 patients (95.5%) wear their osseointegration-mounted prosthetic limb longer daily than when using a socket, with 18 out of 22 (81.8%) reporting using it for ≥ 16 hours daily. Regression analysis identified a 3.89-fold increased risk of fracture for females (p = 0.007) and a 1.02-fold increased risk of fracture per kg above a mean of 80.4 kg (p = 0.046). No increased risk was identified for bilateral implants (p = 0.083), time from amputation to osseointegration (p = 0.974), age at osseointegration (p = 0.331), or bone density (g/cm2, p = 0.560; T-score, p = 0.247; Z-score, p = 0.312). Conclusion. The risks and sequelae of periprosthetic fracture after press-fit osseointegration for amputation should not deter patients or clinicians from considering this procedure. Females and heavier patients are likely to have an increased risk of fracture. Age, years since amputation, and bone density do not appear influential. Cite this article: Bone Joint J 2020;102-B(2):162–169


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 165 - 165
1 Sep 2012
Gebauer M Breer S Hahn M Kendoff D Amling M Gehrke T
Full Access

Introduction. Modular tantalum augments have been introduced to manage severe bone defects in hip and knee revision surgery. The porous surfaces of tantalum augments are intended to enhance osseointegration and a number of studies have documented their excellent biocompatibility. However, the characteristics of tantalum augment osseointegration on human ex vivo specimens from re-revision procedures have not been reported so far. Methods. Out of a total number of 324 hip and knee revisions with a tantalum augment performed in our institution between 2007 and 2010 four patients had to be re-revised at a mean followup time of 15 months. The causes for re-revision were a periprosthetic acetabular fracture in one, a loosening of a tibial component in one and periprosthetic hip infections in two cases. To characterize osseointegration of the tantalum augments, they were removed during revision surgery and subjected to undecalcified processing. All specimens were analysed by contact radiography, histology (toluidine blue, von Kossa) and quantitative histomorphometry. Results. In all specimens trabecular ingrowth was apparent along the former bone-augment-interface. The depth of bone ingrowth into the porous microarchitecture of the augments reached up to 2000 μm. Thin-section analysis revealed scattered and partially mineralized bone forming units within the interior of the augments. Conclusions. To the best of our knowledge this is the first histomorphometric analysis on the osseointegration of tantalum augments in human ex vivo specimens. In the presented series porous tantalum showed excellent osteoconductive characteristics on the histological level. These early ex vivo histological findings are promising, but structural analysis of later re-revision cases is needed


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 201 - 201
1 Sep 2012
Devine D Arens D Burelli S Bloch HR Boure L
Full Access

The osteointegration of a new three-dimensional reticular titanium material, Trabecular Titanium™, was assessed using a bilateral cancellous (distal femur, proximal tibia) and cortical (tibia diaphysis) bone drill hole model in 18 sheep. TT is a novel Ti6Al4V material characterized by a high open porosity and composed of multi-planar regular hexagonal cells. Two 5.0 mm diameter, 12 mm long cylinders (TT1 & TT2) of two different porosities (TT1:650 μm, TT2:1250 μm) were tested and compared to two solid predicate 5.0 mm diameter, 12 mm long Ti cylinders (PT1 & PT2) coated with porous Ti (PT1: vacuum-plasma spray coating; PT2: inert-gas shielding arc spray coating). Each implant type was surgically implanted at 4 separate locations in each sheep (16 implants per sheep). Three timepoints of 4, 16 and 52 weeks (n=6 sheep per timepoint) were used. Bone-implant interface was analyzed ex vivo by the determination of: 1) the shear strength (SS) measured during a push out test, 2) the percentage of bone in-growth (%B) using histomorphometry, 3) the bone apposition rate using fluorochrome labelling analysis and 4) the bone-implant contact using backscattered scanning electron microscopy (SEM). An ANOVA with a Bonferroni Post hoc test were used to detect differences between tested and predicate implants. P values 0.05 were considered significant. At 4 weeks, 5 out of the 6 TT1 could be pushed out of the cortical bone (COB) samples. The remaining TT1 collapsed during testing. All TT1 could be pushed of the cancellous bone (CAB) samples. Four out of the 6 TT2 could be pushed out of CAB and of the COB samples. At 16 and 52 weeks, only one TT1 and one TT2 could be pushed out of the bone samples, the remaining implants collapsed during testing. All the PTs were successfully pushed out at all timepoints. The mean %B of PT1 and PT2 did not significantly increase over time. For both materials, the mean %B ranged between 1.7% and 4.4% at 4 weeks and between 5.7% and 6.5% at 52 weeks. The mean %B of TT1 significantly increased over time in both COB (10.2% at 4 weeks, 46.2% at 16 weeks, 50.5% at 52 weeks) and CAB (5.8%, 23.9%, 24.3%). Similarly, the mean %B of TT2 significantly increased over time in both COB (7.8%, 48.6%, 65%) and CAB (4.5%, 24.1%, 38.6%). Bone apposition rates for the TT implants remained superior to 2 μm/day for the entire duration of the study. SEM showed an intimate bone-implant contact for all implant types at all timepoints. At 16 and 52 weeks, histomorphometry revealed an extensive osteointegration of the TT specimens. Bone-implant interface strength was so high for the TT implants that they could not be pushed out of the bone samples. The results of this study would indicate that the TT implants provide a good scaffold for bone in-growth


The Bone & Joint Journal
Vol. 102-B, Issue 1 | Pages 55 - 63
1 Jan 2020
Hagberg K Ghassemi Jahani S Kulbacka-Ortiz K Thomsen P Malchau H Reinholdt C

Aims. The aim of this study was to describe implant and patient-reported outcome in patients with a unilateral transfemoral amputation (TFA) treated with a bone-anchored, transcutaneous prosthesis. Methods. In this cohort study, all patients with a unilateral TFA treated with the Osseointegrated Prostheses for the Rehabilitation of Amputees (OPRA) implant system in Sahlgrenska University Hospital, Gothenburg, Sweden, between January 1999 and December 2017 were included. The cohort comprised 111 patients (78 male (70%)), with a mean age 45 years (17 to 70). The main reason for amputation was trauma in 75 (68%) and tumours in 23 (21%). Patients answered the Questionnaire for Persons with Transfemoral Amputation (Q-TFA) before treatment and at two, five, seven, ten, and 15 years’ follow-up. A prosthetic activity grade was assigned to each patient at each timepoint. All mechanical complications, defined as fracture, bending, or wear to any part of the implant system resulting in removal or change, were recorded. Results. The Q-TFA scores at two, five, seven, and ten years showed significantly more prosthetic use, better mobility, fewer problems, and an improved global situation, compared with baseline. The survival rate of the osseointegrated implant part (the fixture) was 89% and 72% after seven and 15 years, respectively. A total of 61 patients (55%) had mechanical complications (mean 3.3 (SD 5.76)), resulting in exchange of the percutaneous implant parts. There was a positive relationship between a higher activity grade and the number of mechanical complications. Conclusion. Compared with before treatment, the patient-reported outcome was significantly better and remained so over time. Although osseointegration and the ability to transfer loads over a 15-year period have been demonstrated, a large number of mechanical failures in the external implant parts were found. Since these were related to higher activity, restrictions in activity and improvements to the mechanical properties of the implant system are required. Cite this article: Bone Joint J 2020;102-B(1):55–63


The Bone & Joint Journal
Vol. 96-B, Issue 1 | Pages 106 - 113
1 Jan 2014
Brånemark R Berlin Ö Hagberg K Bergh P Gunterberg B Rydevik B

Patients with transfemoral amputation (TFA) often experience problems related to the use of socket-suspended prostheses. The clinical development of osseointegrated percutaneous prostheses for patients with a TFA started in 1990, based on the long-term successful results of osseointegrated dental implants.

Between1999 and 2007, 51 patients with 55 TFAs were consecutively enrolled in a prospective, single-centre non-randomised study and followed for two years. The indication for amputation was trauma in 33 patients (65%) and tumour in 12 (24%). A two-stage surgical procedure was used to introduce a percutaneous implant to which an external amputation prosthesis was attached. The assessment of outcome included the use of two self-report questionnaires, the Questionnaire for Persons with a Transfemoral Amputation (Q-TFA) and the Short-Form (SF)-36.

The cumulative survival at two years’ follow-up was 92%. The Q-TFA showed improved prosthetic use, mobility, global situation and fewer problems (all p < 0.001). The physical function SF-36 scores were also improved (p < 0.001). Superficial infection was the most frequent complication, occurring 41 times in 28 patients (rate of infection 54.9%). Most were treated effectively with oral antibiotics. The implant was removed in four patients because of loosening (three aseptic, one infection).

Osseointegrated percutaneous implants constitute a novel form of treatment for patients with TFA. The high cumulative survival rate at two years (92%) combined with enhanced prosthetic use and mobility, fewer problems and improved quality of life, supports the ‘revolutionary change’ that patients with TFA have reported following treatment with osseointegrated percutaneous prostheses.

Cite this article: Bone Joint J 2014;96-B:106–13.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_18 | Pages 2 - 2
1 Nov 2017
Young PS Greer AIM Tsimbouri MP Meek RMD Gadegaard N Dalby MJ
Full Access

Osteoporosis is a major healthcare burden, responsible for significant morbidity and mortality. Manipulating bone homeostasis would be invaluable in treating osteoporosis and optimising implant osseointegration. Strontium increases bone density through increased osteoblastogenesis, increased bone mineralisation, and reduced osteoclast activity. However, oral treatment may have significant side effects, precluding widespread use. We have recently shown that controlled disorder nanopatterned surfaces can control osteoblast differentiation and bone formation. We aimed to combine the osteogenic synergy of nanopatterning with local strontium delivery to avoid systemic side effects. Using a sol-gel technique we developed strontium doped and/or nanopatterned titanium surfaces, with flat titanium controls including osteogenic and strontium doped media controls. These were characterised using atomic force microscopy and ICP-mass spectroscopy. Cellular response assessed using human osteoblast/osteoclast co-cultures including scanning electron microscopy, quantitative immunofluorescence, histochemical staining, ELISA and PCR techniques. We further performed RNAseq gene pathway combined with metabolomic pathway analysis to build gene/metabolite networks. The surfaces eluted 800ng/cm2 strontium over 35 days with good surface fidelity. Osteoblast differentiation and bone formation increased significantly compared to controls and equivalently to oral treatment, suggesting improved osseointegration. Osteoclast pre-cursor survival and differentiation reduced via increased production of osteoprotegrin. We further delineated the complex cellular signalling and metabolic pathways involved including unique targets involved in osteoporosis. We have developed unique nanopatterned strontium eluting surfaces that significantly increase bone formation and reduce osteoclastogenesis. This synergistic combination of topography and chemistry has great potential merit in fusion surgery and arthroplasty, as well as providing potential targets to treat osteoporosis


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_14 | Pages 8 - 8
1 Oct 2014
Halai M Ker A Nadeem D Sjostrom T Su B Dalby M Meek R Young P
Full Access

In biomaterial engineering the surface of an implant can influence cell differentiation, adhesion and affinity towards the implant. Increased bone marrow derived mesenchymal stromal cell (BMSC) differentiation towards bone forming osteoblasts, on contact with an implant, can improve osteointegration. The process of micropatterning has been shown to improve osteointegration in polymers, but there are few reports surrounding ceramics. The purpose of this study was to establish a co-culture of BMSCs with osteoclast progenitor cells and to observe the response to micropatterned zirconia toughened alumina (ZTA) ceramics with 30 µm diameter pits. The aim was to establish if the pits were specifically bioactive towards osteogenesis or were generally bioactive and would also stimulate osteoclastogenesis that could potentially lead to osteolysis. We demonstrate specific bioactivity of micropits towards osteogenesis with more nodule formation and less osteoclastogenesis. This may have a role when designing ceramic orthopaedic implants


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 163 - 163
1 Sep 2012
Albers C Hofstetter W Siebenrock K Landmann R Klenke F
Full Access

Introduction. Infection of endoprostheses is a serious complication in orthopedic surgery. As silver is known for its antibactierial effects, silver-coated endoprostheses have gained increased attention to decrease infection rates. However, cytotoxic effects of silver on bone cells have not been investigated in detail. We aimed to investigate whether silver nano-/microparticles and ionic silver exert cytotoxic effects on osteoblasts and osteoclasts in vitro and to correlate potential effects with the antibacterial effect on Staph. epidermidis. Methods. Murine osteoclasts (OC) and murine osteoblasts (OB) were treated with silver particles (avg. sizes: 50nm, 3μm, 30μm, 8μg/ml–500μg/ml) and Ag+NO3- (0.5μg/ml–500μg/ml). Silver treatment started on day 3 to prevent interference with cell adhesion. XTT assays were performed to assess cell viability. Tartrate resistant acidic phosphatase (TRAP) activity and alkaline phosphatase (ALP) activity served as measures for OC and OB differentiation, respectively. The release of silver ions from silver particles was quantified with atomic emission spectometry (AES). Titanium particles (avg. sizes: 50nm and 30μm) were used as controls to investigate whether potential silver effects were particle- or ion-mediated. The antimicrobial activity of silver ions and particles was tested with Staph. epidermidis agar inhibition assays. Results. Ionic silver had the strongest impact on cell differentiation and viability of OC and OB (OC differentiation: mean IC50 = 5 μg/ml, OC viability: mean IC50 = 14 μg/ml, OB differentiation: mean IC50 = 1 μg/ml, OB viability: mean IC50 = 1 μg/ml). Silver nanoparticles decreased cell differentiation and viability in a dose dependent manner (OC differentiation: mean IC50 = 5μg/ml, OC viability: mean IC50 = 14μg/ml, OB differentiation: mean IC50 = 1μg/ml, OB viability: mean IC50 = 1μg/ml). Silver microparticles as well as titanium nano- and microparticles had no effect on cell differentiation and viability. AES showed a size and dose dependent release of silver ions from silver nano- and microparticles. Agar inhibition assays showed a dose correlation of the antibacterial effect of silver with the cytotoxic effects on OB and OC. Conclusion. Silver nanoparticles and silver ions exert dose-dependent cytotoxic effects on OB and OC in vitro resulting in a severe alteration of cell differentiation and viability. The effect of silver on OB and OC seems to be mediated primarily by silver ions and correlates with the substance's antibacterial effects. The cytotoxicity of silver nanoparticles is mediated primarily by the size-dependent liberation of silver ions. Disturbance of OB and OC survival may have deleterious effects on the osseointegration of orthopedic implants. Further in vivo studies are needed to investigate the osseointegration of silver coated implants prior to their widespread clinical application


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 355 - 355
1 Sep 2012
Philippot R Camilleri JP Boyer B Farizon F
Full Access

The concept of stainless steel dual mobility cups in total hip arthroplasty has demonstrated very low long-term instability rates and a 98% survival rate after 12 years. We systematically implanted titanium alloy acetabular cups during a one year period. The purpose of our retrospective study was to report the 18-year clinical outcome data in a homogeneous and continuous series of 103 primary total hip replacements after implantation of a cementless titanium cup. All patients were implanted with NOVAE Ti (SERF) cups made of titanium alloy combined with a retentive polyethylene liner and a 22.2 mm cobalt chrome prosthetic head. Mean patient age at the time of surgery was 53 years. All patients were clinically and radiographically evaluated. The overall 18-year actuarial cup survival rate with a 95% confidence interval was 87.4%. At last follow-up, there was no evidence of implant instability whereas acetabular aseptic loosening was reported in one case and high wear of the retentive liner in 9. The results of this investigation confirmed the long-term stability of dual-mobility implants. The main limitation of this system was early wear of the polyethylene liner in contact with the titanium metal back and reaction with third body along with loss of liner retentivity. In our study, titanium demonstrated favourable osteointegration properties but poor tribologic characteristics, therefore suggesting its interest at the bone-cup interface only


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 299 - 299
1 Sep 2012
Clauss M Frunz S Pannhorst S Arteschrang A Ilchmann T
Full Access

Introduction. Primary stability of the Burch-Schneider ring (BSR) in case of acetabular revision is discussed controversial. In a retrospective two centre cohort study we analyzed the influence of the mode of screw fixation and the restoration of the center of rotation on migration, loosening and other radiographic parameters. Material/Methods. Patients with a minimal radiographical follow-up of 2 years and suitable for EBRA analysis were included. In group 1 (46 patients) screws were placed through the cranial spherical part of the ring and covered by cement and cup, in group 2 (40 patients) screws were placed through the cranial flange. Preoperative bone defects were classified, the postoperative centre of rotation was determined. Changes of screws were recorded, migration exceeding >1mm was seen as significant. Results. Demographic data and size of bone defect were comparable in both groups. No cups in group 1 and in group 2 were re-revised. In group 1 the centre of rotation was medialized mean 5.5 (SD 8.2) mm, in group 2 it was lateralised mean 11.0 (SD 10.3) mm (p<.001). Screw changes were observed in 5 (10.9%) patients in group 1 and 14 (35%) patients in group 2 (p=.009). Migration at 2 years was observed for 17 (37%) patients in group 1, mean migration was 1.0 (SD 1.0) mm. In group 2 21 (52.5%) patients showed migration at 2 years (p=.193), mean migration was 1.6 (SD 1.7) mm (p=.031). Conclusion. Medialization of the implant and screw fixation with compression of the ring against the acetabular roof reduces migration and screw changes. The improved stability might be due to better osteointegration of the BSR and angular stability of the screws which are additionally fixed with cement


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 262 - 262
1 Sep 2012
Buchanan J Fletcher R Linsley P
Full Access

Aims. Will Hydroxyapatite hip (HA) arthroplasty associated with ceramic bearings produce uncomplicated function in younger, active patients’ The incidence of aseptic loosening, dislocation and broken implants has been particularly investigated. Debris disease from plastic debris contributes to aseptic loosening. Hard-Hard bearings should obviate this problem. Metal-metal will release ions which might be deleterious. Experience with metal-metal resurfacing has high lighted problems including pseudo-tumours. Ceramic bearings may fracture but otherwise appear free of complications. Methods. This is a study extending over 19 years of 626 HA hip arthroplasties with ceramic bearings. Annual review using Harris Hip Score to assess pain and function and X-rays to check osseointegration has been performed. Alumina ceramic was inserted in 467 hips. The newer Zirconia Toughened Alumina (ZTA) has been inserted in 169 hips. There are 118 hips still under review at 10 or more years. Results. Aseptic loosening is unusual (one stem, two acetabulae (3 of 1252 components, 0.24%) Failure from mal-orientation with repeated dislocation occurred in six hips (0.96%). Three alumina heads (0.48%) and two alumina liners (0.32%) broke. There has been no failure of ZTA ceramic. No patients have thigh pain. Osteolysis and debris disease have not arisen. Harris Hip Scores show 91.2% scoring over 90 or 100. Lower scores mostly relate to other joint and medical problems. Conclusions. Assessments confirm that patients remain well. Aseptic loosening of HA hips is rare at 0.24%. Failure from broken alumina components is unusual. Alumina has now been superseded by ZTA for implantation. Ceramic on ceramic is a reliable selection for bearing surfaces in patients of any age and either sex


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 496 - 496
1 Sep 2012
Huber M Zweymueller K Lintner F
Full Access

Background. Continual implant stability is an important factor for the long-term success of cementless hip replacements. The increasing lifespan of patients causes a higher frequency of osteoporosis which may result in implant loosening due to bone loss. This study aimed to evaluate stability of long living implants in patients with advanced age. Patients and methods. Nine cementless stems made of Titanium-alloy including adjacent bone tissue obtained post mortem were evaluated by radiologic-microradigraphical, histological and morphometrical analysis. The percentage of the surface area covered by bone (BICI=bone implant contact index) was determined. The age of seven women and two men ranged between 81 and 92 years. The time in situ ranged between 10 and 20 years. From the entire length of the femora bearing implants 5 transverse segments were excised, dehydrated, embedded in methylmethacrylate. After the grinding procedure, the sections were evaluated by light microscopy and morphometrical analysis. The autopsy findings were recorded. Atherosclerosis and their related diseases were evident in all cases. Results. The femora of all female patients revealed features of high bony atrophy with concomitant transformation of the corticalis into spongy bone, whereas in male patients minor to moderate atrophic bone changes in the proximal femoral area without implication of the corticalis could be observed. All of the cementless stems made of Titanium-alloy showed osteointegration. The stabilization of the implant resulted in the forceps-like encasement of the edges of the implant within the cortical anchoring and by the development of compensatory bony hypertrophy. The BICI ranged between 35 und 63 percent. Conclusion. Elderly patients provided with cementless hip replacments revealed stable implants in spite of marked bone atrophy and an implantation period up to 20 years. Simultaneously, severe atherosclerosis and their related diseases, which may contribute to bone loss, were evident. The present findings may result from the favoring properties of cementless endoprostheses made of titanium alloy, cortical prosthesis anchoring, and self regulating bone processes. Pharmacologic and therapeutic consequences together with geriatric assessment should be required to preserve functionality and mobility


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 197 - 197
1 Sep 2012
Benazzo F Gastaldi G Fontana J Marullo M
Full Access

Engineered bone tissue to recreate the continuity of damaged skeletal segments is one of the field of interest of tissue engineering. Trabecular titanium has very good mechanical properties and high in vitro and in vivo biocompatibility: it can be used in biomedical applications to promote osteointegration demonstrating that it can be successfully used for regenerative medicine in orthopaedic surgery (1). Purpose of this investigation was to evaluate the behavior of adipose tissue derived stem cells (hASCs) cultured on scaffolds of Trabecular TitaniumTM (Lima-Lto) (TT). hASCs are considered to be multipotent mesenchymal stem cells that are easily induced to differentiate into functional osteoblasts both in vitro and in vivo (2). The hASCs were obtained from the subcutaneous adipose tissue of healthy donors during total hip replacement procedures after digestion with collagenase. They were seeded on monolayer and on the TT scaffolds, and incubated at 37 degrees C in 5% CO2 with osteogenic medium or control medium. The expression of bone-related genes using RT-PCR, time course of alkaline phosphatase activity and morphological investigation with Scanning Electron Microscopy (SEM) were performed to evaluate the osteogenic differentiation of hASCs. Alkaline phosphatase activity, marker of the differentiation toward the osteogenic pattern, was significantly higher in hASCs grown with osteogenic medium than in cells grown with control medium, both in monolayer and TT scaffolds; moreover, also alkaline phosphatase of hASCs grown on TT scaffolds in the presence of control medium increased with time, differently from that of cells grown on monolayer. The osteogenic differentiated hASCs expressed the bone-related genes type I collagen, osteocalcin, Runx-2 and alkaline phosphatase. SEM observations showed that hASCs differentiated toward osteoblast-like cells: they produced a big amount of extracellular matrix that covered the surface of the porous scaffolds with bridges between the pore walls. These data suggest that hASCs are able to adhere to TT scaffolds, to acquire an osteoblastic phenotype and to produce abundant extracellular matrix, with but also without osteogenic medium. We can therefore conclude that this material carries osteinductive properties being responsible of ostegenic differentiation; consequently, this scaffold/cells construct is effective to regenerate damaged tissue and to restore the function of bone tissue


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 134 - 134
1 Sep 2012
Beaulé P White C Carsen S Rasuli K Doucette S
Full Access

Introduction. Modern cementless press fit stems rely on early fixation and stability for osteointegration and longterm success with early migration increasing the risk of failure. The Ein Bild Roentegen Analyse Femoral Component Analysis (EBRA-FCA) methods allow accurate measurement of femoral stem subsidence without the need for Tantalum markers. The degree of subsidence of femoral stems in the first two years has been shown to be highly predictive of failure when using the cut off value of 1.5 mm. We aimed to measure the early migration pattern of a titanium alloy, tapered, plasma and hydroxyapatite coated femoral stem and any factors associated with subsidence. Methods. Between January 2005-June 2007, 387 Accolade cementless femoral stems (Stryker, Allendale NJ) were implanted at our institution. Seventy-seven had a minimum of two years post operative follow up and a complete set of pre and postoperative radiographs for analysis. Our group inlcuded 45 females with a mean age of 71.4 years, and 32 males with a mean age of 68.5 years. The primary diagnosis was degenerative osteoarthritis in 71 patients, avascular necrosis in two, and post fracture in four patients. The average BMI was 27.1. We measured the canal index to assess bone quality and the canal calcar index to assess the proximal femoral morphology. Immediate postoperative radiographs were assessed for canal fill of the prosthesis and implantation varus/valgus angles. The EBRA-FCA software was used to obtain migration curves for each stem. Results. The mean follow up was 29.3months (24–48). The mean canal index was 0.55 (0.36–0.68) with a mean canal calcar index of 0.54 (0.39–0.79). The average canal fill index at the midpoint of the stem was <0.8 in 37 stems and >80 in 40 stems. The average subsidence at 24 months was 2 mm and this had risen to 2.4 mm by 36 months postoperatively. When analysed using a Kaplan Meier curve using 1.5 mm as an end point we found a survivorship of 63.4% (52.3–74.5) at 24 months and this had worsened to 41.6% (26.6–56.5) by 36 months. Multivariate and univariate regression analysis of measured variables did not reveal any significant hazard for any factor other than the larger stem sizes doing worse. Discussion. Although several cementless tapered stem designs have had an excellent track record, our migration analysis of the Accolade stem is somewhat concerning. Thirty three percent of stems had reached the 1.5 mm subsidence point by two years. This is of concern as work has previously shown this to predict failure of stems with aseptic loosening at ten years with an accuracy of 79%. If these stems go on to fail at the predicted rate this would represent an unacceptably high level of failure. Our data raises serious concerns about the overall clinical performance of this stem design due to poor initial stability and integration


The Bone & Joint Journal
Vol. 103-B, Issue 4 | Pages 769 - 774
1 Apr 2021
Hoogervorst LA Hart MJ Simpson PM Kimmel LA Oppy A Edwards ER Gabbe BJ

Aims

Complex fractures of the femur and tibia with associated severe soft tissue injury are often devastating for the individual. The aim of this study was to describe the two-year patient-reported outcomes of patients in a civilian population who sustained a complex fracture of the femur or tibia with a Mangled Extremity Severity Score (MESS) of ≥ 7, whereby the score ranges from 2 (lowest severity) to 11 (highest severity).

Methods

Patients aged ≥ 16 years with a fractured femur or tibia and a MESS of ≥ 7 were extracted from the Victorian Orthopaedic Trauma Outcomes Registry (January 2007 to December 2018). Cases were grouped into surgical amputation or limb salvage. Descriptive analysis were used to examine return to work rates, three-level EuroQol five-dimension questionnaire (EQ-5D-3L), and Glasgow Outcome Scale-Extended (GOS-E) outcomes at 12 and 24 months post-injury.


The Bone & Joint Journal
Vol. 100-B, Issue 4 | Pages 527 - 534
1 Apr 2018
Hansson E Hagberg K Cawson M Brodtkorb TH

Aims

The aim of this study was to compare the cost-effectiveness of treatment with an osseointegrated percutaneous (OI-) prosthesis and a socket-suspended (S-) prosthesis for patients with a transfemoral amputation.

Patients and Methods

A Markov model was developed to estimate the medical costs and changes in quality-adjusted life-years (QALYs) attributable to treatment of unilateral transfemoral amputation over a projected period of 20 years from a healthcare perspective. Data were collected alongside a prospective clinical study of 51 patients followed for two years.


Aims

The Intraosseous Transcutaneous Amputation Prosthesis (ITAP) may improve quality of life for amputees by avoiding soft-tissue complications associated with socket prostheses and by improving sensory feedback and function. It relies on the formation of a seal between the soft tissues and the implant and currently has a flange with drilled holes to promote dermal attachment. Despite this, infection remains a significant risk. This study explored alternative strategies to enhance soft-tissue integration.

Materials and Methods

The effect of ITAP pins with a fully porous titanium alloy flange with interconnected pores on soft-tissue integration was investigated. The flanges were coated with fibronectin-functionalised hydroxyapatite and silver coatings, which have been shown to have an antibacterial effect, while also promoting viable fibroblast growth in vitro. The ITAP pins were implanted along the length of ovine tibias, and histological assessment was undertaken four weeks post-operatively.


The Bone & Joint Journal
Vol. 99-B, Issue 1_Supple_A | Pages 50 - 59
1 Jan 2017
Carli AV Negus JJ Haddad FS

Aims

Periprosthetic femoral fractures (PFF) following total hip arthroplasty (THA) are devastating complications that are associated with functional limitations and increased overall mortality. Although cementless implants have been associated with an increased risk of PFF, the precise contribution of implant geometry and design on the risk of both intra-operative and post-operative PFF remains poorly investigated. A systematic review was performed to aggregate all of the PFF literature with specific attention to the femoral implant used.

Patients and Methods

A systematic search strategy of several journal databases and recent proceedings from the American Academy of Orthopaedic Surgeons was performed. Clinical articles were included for analysis if sufficient implant description was provided. All articles were reviewed by two reviewers. A review of fundamental investigations of implant load-to-failure was performed, with the intent of identifying similar conclusions from the clinical and fundamental literature.


The Bone & Joint Journal
Vol. 97-B, Issue 6 | Pages 836 - 841
1 Jun 2015
Jónsson BY Mjöberg B

A total of 20 patients with a depressed fracture of the lateral tibial plateau (Schatzker II or III) who would undergo open reduction and internal fixation were randomised to have the metaphyseal void in the bone filled with either porous titanium granules or autograft bone. Radiographs were undertaken within one week, after six weeks, three months, six months, and after 12 months.

The primary outcome measure was recurrent depression of the joint surface: a secondary outcome was the duration of surgery.

The risk of recurrent depression of the joint surface was lower (p < 0.001) and the operating time less (p < 0.002) when titanium granules were used.

The indication is that it is therefore beneficial to use porous titanium granules than autograft bone to fill the void created by reducing a depressed fracture of the lateral tibial plateau. There is no donor site morbidity, the operating time is shorter and the risk of recurrent depression of the articular surface is less.

Cite this article: Bone Joint J 2015; 97-B:836–41


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 1 | Pages 108 - 112
1 Jan 2009
Chandrasekar CR Grimer RJ Carter SR Tillman RM Abudu A Buckley L

Endoprosthetic replacement of the proximal femur may be required to treat primary bone tumours or destructive metastases either with impending or established pathological fracture. Modular prostheses are available off the shelf and can be adapted to most reconstructive situations for this purpose. We have assessed the clinical and functional outcome of using the METS (Stanmore Implants Worldwide) modular tumour prosthesis to reconstruct the proximal femur in 100 consecutive patients between 2001 and 2006. We compared the results with the published series for patients managed with modular and custom-made endoprosthetic replacements for the same conditions.

There were 52 males and 48 females with a mean age of 56.3 years (16 to 84) and a mean follow-up of 24.6 months (0 to 60). In 65 patients the procedure was undertaken for metastases, in 25 for a primary bone tumour, and in ten for other malignant conditions. A total of 46 patients presented with a pathological fracture, and 19 presented with failed fixation of a previous pathological fracture. The overall patient survival was 63.6% at one year and 23.1% at five years, and was significantly better for patients with a primary bone tumour than for those with metastatic tumour (82.3% vs 53.3%, respectively at one year (p = 0.003)). There were six early dislocations of which five could be treated by closed reduction. No patient needed revision surgery for dislocation. Revision surgery was required by six (6%) patients, five for pain caused by acetabular wear and one for tumour progression. Amputation was needed in four patients for local recurrence or infection.

The estimated five-year implant survival with revision as the endpoint was 90.7%. The mean Toronto Extremity Salvage score was 61% (51% to 95%). The implant survival and complications resulting from the use of the modular system were comparable to the published series of both custom-made and other modular proximal femoral implants.

We conclude that at intermediate follow-up the modular tumour prosthesis for proximal femur replacement provides versatility, a low incidence of implant-related complications and acceptable function for patients with metastatic tumours, pathological fractures and failed fixation of the proximal femur. It also functions as well as a custom-made endoprosthetic replacement.