Aims. The main advantage of 3D-printed, off-the-shelf acetabular implants is the potential to promote enhanced bony fixation due to their controllable porous structure. In this study we investigated the extent of
Aims. Aseptic loosening is a leading cause of uncemented arthroplasty failure, often accompanied by fibrotic tissue at the bone-implant interface. A biological target, neutrophil extracellular traps (NETs), was investigated as a crucial connection between the innate immune system’s response to injury, fibrotic tissue development, and proper bone healing. Prevalence of NETs in peri-implant fibrotic tissue from aseptic loosening patients was assessed. A murine model of
Introduction. Patients with aseptic loosening, a cause of failure in uncemented total joint arthroplasty (TJA), often present with fibrous tissue at the bone-implant interface. 1. In this study, we characterize the presence of neutrophil extracellular traps (NETs) in the intramedullary fibrotic membrane of aseptic loosening patients. We further explore the role of NETs, mediated by peptidyl arginine deiminase (PAD4), in peri-implant fibrosis and
Introduction. Modularity in femoral stem designs allow surgeons to independently control leg length, offset, and femoral version in revision or complex primary THA cases. Initial enthusiasm in these modular stems has been tempered by recognition of modular junction failures. This study evaluates mean 5-year clinical results and survival rates of a 3-part titanium alloy modular femoral implant with unique taper geometries and a metaphyseal plasma spray surface. The current results are presented after pre-market independent fatigue testing performed by Orthopaedic Laboratory (Greenwald) and previously published early clinical results in 2006. Low plasticity burnishing (LPB) was added in 2005 to further strengthen the neck metaphyseal modular junction. The modular stem component is a polished cylindrical splined clothespin design. Our hypothesis is that these unique modular junctions succeed in offering the advantages of modularity without failure at this midterm follow-up period. Methods. Between May 2010 and July 2016, 32 total hip arthroplasties were performed using a 3-part femoral stem with neck-metaphyseal-stem modular junctions. Surgeries were either the final stage of a two-stage revision for infection, revision THR for loosening, or a revision of a previous non-prosthetic replacement procedure. Patients were entered into an IRB-approved registry and followed with x-rays, HHS, Oxford scores, and patient satisfaction scores. Patients who failed to return for routine follow-up were contacted by phone or email. Two patients had died with their implants intact. Six patients could not be reached for an updated follow-up. One stem was revised for loosening at 33 months due to failed
The purpose of this study was to evaluate the biological fixation of a 3D printed porous implant, with and without different hydroxyapatite (HA) coatings, in a canine model. A canine transcortical model was used to evaluate the characteristics of bone ingrowth of Ti6Al4V cylindrical implants fabricated using laser rapid manufacturing (LRM). At four and 12 weeks post-implantation, we performed histological analysis and mechanical push-out testing on three groups of implants: a HA-free control (LRM), LRM with precipitated HA (LRM-PA), and LRM with plasma-sprayed HA (LRM-PSHA).Aims
Materials and Methods
Aims. United Classification System (UCS) B2 and B3 periprosthetic fractures in total hip arthroplasties (THAs) have been commonly managed with modular tapered stems. No study has evaluated the use of monoblock fluted tapered titanium stems for this indication. This study aimed to evaluate the effects of a monoblock stems on implant survivorship, postoperative outcomes, radiological outcomes, and
Aims. Pelvic discontinuity is a rare but increasingly common complication of total hip arthroplasty (THA). This single-centre study evaluated the performance of custom-made triflange acetabular components in acetabular reconstruction with pelvic discontinuity by determining: 1) revision and overall implant survival rates; 2) discontinuity healing rate; and 3) Harris Hip Score (HHS). Methods. Retrospectively collected data of 38 patients (39 hips) with pelvic discontinuity treated with revision THA using a custom-made triflange acetabular component were analyzed. Minimum follow-up was two years (mean 5.1 years (2 to 11)). Results. There were eight subsequent surgical interventions. Two failures (5%) of the triflange acetabular components were both revised because of deep infection. There were seven (18%) patients with dislocation, and five (13%) of these were treated with a constraint liner. One patient had a debridement, antibiotics, and implant retention (DAIR) procedure. In 34 (92%) hips the custom-made triflange component was considered stable, with a healed pelvic discontinuity with no aseptic loosening at midterm follow-up. Mean HHS was 80.5 (48 to 96). Conclusion. The performance of the custom triflange implant in this study is encouraging, with high rates of discontinuity healing and
Aims. Uncemented metal acetabular components show good
Aims. BoneMaster is a thin electrochemically applied hydroxyapatite (HA) coating for orthopaedic implants that is quickly resorbed during
To evaluate the effects of 6 and 18 months of abaloparatide (ABL) compared with placebo (PBO) on bone mineral density (BMD) in the acetabular regions of postmenopausal women with osteoporosis (OP). Acetabular bone loss, as may occur in OP, increases risk of acetabular fragility fractures. a. In total hip arthroplasty (THA), low acetabular BMD adversely affects primary stability,
Subsidence remains a concern when utilizing modern tapered fluted titanium (TFT) femoral stems and may lead to leg length discrepancy, impingement, instability and failure to obtain stem
Different techniques have been described to address massive bone loss of the acetabulum in revision hip surgery. aMace has gained popularity as it provides customization aiming to restore hip centre and provide good initial stability in cases of large non-contained defects. It takes into account quality of host bone. Its porous defect filling scaffold provides an excellent surface for
3D printing acetabular cups offers the theoretical advantage of enhanced bony fixation due to greater design control of the porous implant surfaces. Analysing retrieved 3D printed implants can help determine whether this design intent has been achieved. We sectioned 14 off-the-shelf retrieved acetabular cups for histological analysis; 7 cups had been 3D printed and 7 had been conventionally manufactured. Some of the most commonly used contemporary designs were represented in both groups, which were removed due to either aseptic loosening, unexplained pain, infection or dislocation. Clinical data was collected for all implants, including their age, gender, and time to revision. Bone ingrowth was evaluated using microscopic assessment and two primary outcome measures: 1) bone area fraction and 2) extent of bone ingrowth. The additively manufactured cups were revised after a median (IQR) time of 24.9 months (20.5 to 45.6) from patients with a median (IQR) age of 61.1 years (48.4 to 71.9), while the conventional cups had a median (IQR) time to revision of 46.3 months (34.7 to 49.1, p = 0.366) and had been retrieved from patients with a median age of 66.0 years (56.9 to 68.9, p = 0.999). The additively and conventionally manufactured implants had a median (IQR) bone area fraction of 65.7% (36.4 to 90.6) and 33.9% (21.9 to 50.0), respectively (p < 0.001). A significantly greater amount of bone ingrowth was measured into the backside of the additively manufactured acetabular cups, compared to their conventional counterparts (p < 0.001). Bone occupied a median of 60.0% and 5.7% of the porous depth in the additively manufactured and conventional cups, respectively. 3D printed components were found to achieve a greater amount of bone ingrowth than their conventionally manufactured counterparts, suggesting that the complex porous structures generated through this manufacturing technique may encourage greater
Aims. The diversity of femoral morphology renders femoral component sizing in total hip arthroplasty (THA) challenging. We aimed to determine whether femoral morphology and femoral component filling influence early clinical and radiological outcomes following THA using fully hydroxyapatite (HA)-coated femoral components. Methods. We retrospectively reviewed records of 183 primary uncemented THAs. Femoral morphology, including Dorr classification, canal bone ratio (CBR), canal flare index (CFI), and canal-calcar ratio (CCR), were calculated on preoperative radiographs. The canal fill ratio (CFR) was calculated at different levels relative to the lesser trochanter (LT) using immediate postoperative radiographs: P1, 2 cm above LT; P2, at LT; P3, 2 cm below LT; and D1, 7 cm below LT. At two years, radiological femoral component
Introduction. Pelvic discontinuity is a challenging complication. One treatment option that has garnered enthusiasm is acetabular distraction. This method obtains stability via distraction of the discontinuity and placement of an oversized socket (± augments) and elastic recoil of the pelvis. The aims of this study were to report implant survivorship, radiographic results, clinical outcomes, and complications of acetabular distraction for pelvic discontinuity in the largest series to date. Methods. We retrospectively identified all revision THAs with a Paprosky 3B defect and pelvic discontinuity between 2005 and 2017. Of the 162 patients, 32 were treated with distraction. The mean distraction achieved was 5mm (range, 3–8mm). In addition to distraction with a hemispherical cup, augments were utilized in 3 and cages in 19. The mean age at revision was 68 years with 75% female. Mean follow-up was 3 years. Results. The 2-year survivorships free from revision for aseptic loosening, revision, and reoperation were 95%, 75%, and 69%, respectively. There were 3 revisions including one for instability, one for infection, and one for aseptic loosening. At last follow-up, 16 patients had radiographic evidence of cup
Introduction. As new innovations are developed to improve the longevity of joint replacement components, preclinical testing is necessary in the early stages of research into areas such as
Bone ingrowth is desired with uncemented hip implants. Infection is clearly undesirable. We have worked on developing a nanofiber coating for implants that would enhance bone formation while inhibiting infection. Few studies have focused on developing an implant surface nanofiber (NF) coating to prevent infection and enhance
Background. The acknowledged benefit of the direct anterior (DA) approach is early functional return. Most surgeons in the U.S. use cementless femoral replacement given the negative track record of some cemented designs. However, delayed
Introduction. Patients undergoing primary total hip arthroplasty (THA) following pelvic radiation have historically had poor survivorship free of aseptic acetabular component loosening. However, several series have reported improved results with tantalum acetabular components. The purpose of this study was to assess implant survivorship, radiographic results, and clinical outcomes of contemporary, non-tantalum, porous acetabular components in the setting of prior pelvic radiation. Methods. We retrospectively reviewed 33 patients (38 hips) with prior therapeutic pelvic radiation between 2006 and 2016 who underwent primary THA. The mean overall pelvic radiation dose was 6300 cGy with a mean latency period to THA of 5 years. The most common acetabular component was Pinnacle (Depuy-Synthes) in 76%, followed by Trident (Stryker) in 8%, Tritanium (Stryker) in 8%, Trilogy (Zimmer-Biomet) in 5%, and G7 (Zimmer-Biomet) in 3%. Eighty-seven percent of cups were fixed with screws, of which the mean number used was 3. The mean age at primary THA was 74 years, 76% were male, and the mean BMI was 30 kg/m. 2. Mean follow-up was 5 years. Results. The 10-year survivorship free of revision for aseptic loosening, free of any revision, and free of any reoperation were 100%, 89%, and 89%, respectively. There were three revisions; one each for taper corrosion, recurrent dislocation, and infection. Radiographically, all cups had evidence of
Reconstruction of massive acetabular bone defects in primary and revision THA is challenging for reconstructive joint surgeons. The use of porous metal augments is one of the options. The advantages of porous metal augments are easy to use, modularity and lack of resorption. We investigated the radiological results of porous metal augments used for massive acetabular bone defects in primary and revision THA. Forty-one hips in forty patients had porous metal augments between 2011 and 2016. Thirty of the procedures were revision arthroplasties and 11 were primary procedures (Crowe type III in 5 hips, Crowe type IV in 3, septic hip sequalae in 2 and RA in one). Four of the revisions were second-stage reimplantation after infection. The Paprosky classification for revision was 2B in 4 hips, 2C in one, 3A in 3 and 3B in 22. Regenerex augments were used in 39 hips and trabecular metal augments were used in 2. Thirty-six cups were cemented and 5 cups were uncemented. Mean follow-up was 37.6 months (range, 1–82). Radiographic findings of