Nanotechnology is the study, production and controlled
manipulation of materials with a grain size <
100 nm. At this
level, the laws of classical mechanics fall away and those of quantum
mechanics take over, resulting in unique behaviour of matter in
terms of melting point, conductivity and reactivity. Additionally,
and likely more significant, as grain size decreases, the ratio
of surface area to volume drastically increases, allowing for greater interaction
between implants and the surrounding cellular environment. This
favourable increase in surface area plays an important role in mesenchymal
cell differentiation and ultimately bone–implant interactions. Basic science and translational research have revealed important
potential applications for nanotechnology in orthopaedic surgery,
particularly with regard to improving the interaction between implants
and host bone. Nanophase materials more closely match the architecture
of native trabecular bone, thereby greatly improving the osseo-integration
of orthopaedic implants. Nanophase-coated prostheses can also reduce
bacterial adhesion more than conventionally surfaced prostheses.
Nanophase selenium has shown great promise when used for tumour
reconstructions, as has nanophase silver in the management of traumatic
wounds. Nanophase silver may significantly improve healing of peripheral
nerve injuries, and nanophase gold has powerful anti-inflammatory
effects on tendon inflammation. Considerable advances must be made in our understanding of the
potential health risks of production, implantation and wear patterns
of nanophase devices before they are approved for clinical use.
Their potential, however, is considerable, and is likely to benefit
us all in the future. Cite this article:
Cementless arthroplasty has progressed substantially in the recent decades from pressfit implantation to porous-coated and later HA-coated implant fixation as its ultimate current state-of-the-art incarnation. As a consequence ever younger and older patients have received the benefits of hip and other arthroplasty although attention to age-related factors is key to success. Key factors for success, from the implant perspective, are adequate primary stability of the device in the bone supported by design and surface structure variables that together with optimal implant biocompatibility result in durable
Modern modular revision stems employ tapered conical (TCR) distal stems designed for immediate axial and rotational stability with subsequent
Introduction. Intimate bone-implant contact is a requirement for achieving stable component fixation and
Removal of well-fixed cement at the time of revision THA for sepsis is time consuming and risks bone stock loss, femoral perforation or fracture. We report our experience of two-stage revision for infection in a series of cases in which we have retained well-fixed femoral cement. All patients underwent two-stage revision for infection. At the first stage the prostheses and acetabular cement were removed but when the femoral cement mantle demonstrated good
Implant-associated infection is a major source
of morbidity in orthopaedic surgery. There has been extensive research
into the development of materials that prevent biofilm formation,
and hence, reduce the risk of infection. Silver nanoparticle technology
is receiving much interest in the field of orthopaedics for its
antimicrobial properties, and the results of studies to date are
encouraging. Antimicrobial effects have been seen when silver nanoparticles are
used in trauma implants, tumour prostheses, bone cement, and also
when combined with hydroxyapatite coatings. Although there are promising
results with Cite this article: