Advertisement for orthosearch.org.uk
Results 1 - 8 of 8
Results per page:
Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 36 - 36
1 Jan 2017
Owyang D Dadia S Jaere M Auvinet E Brevadt M Cobb J
Full Access

The aim of this project is to test the parameters of Patient Specific Instruments (PSIs) and measuring accuracy of surgical cuts using sawblades with different depths of PSI cutting guide slot. Clear operative oncological margins are the main target in malignant bone tumour resections. Novel techniques like patient specific instruments (PSIs) are becoming more popular in orthopaedic oncology surgeries and arthroplasty in general with studies suggesting improved accuracy and reduced operating time using PSIs compared to conventional techniques and computer assisted surgery. Improved accuracy would allow preservation of more natural bone of patients with smaller tumour margin. Novel low-cost technology improving accuracy of surgical cuts, would facilitate highly delicate surgeries such as Joint Preserving Surgery (JPS) that improves quality of life for patients by preserving the tibial plateau and muscle attachments around the knee whilst removing bone tumours with adequate tumour margins. There are no universal guidelines on PSI designs and there are no studies showing how specific design of PSIs would affect accuracy of the surgical cuts. We hypothesised if an increased depth of the cutting slot guide for sawblades on the PSI would improve accuracy of cuts. A pilot drybone experiment was set up, testing 3 different designs of a PSI with changing cutting slot depth, simulating removal of a tumour on the proximal tibia. A handheld 3D scanner (Artec Spider, Luxembourg) was used to scan tibia drybones and Computer Aided Design (CAD) software was used to simulate osteosarcoma position and plan intentioned cuts. PSI were designed accordingly to allow sufficient tumour. The only change for the 3 designs is the cutting slot depth (10mm, 15mm & 20mm). 7 orthopaedic surgeons were recruited to participate and perform JPS on the drybones using each design 2 times. Each fragment was then scanned with the 3D scanner and were then matched onto the reference tibia with customized software to calculate how each cut (inferior-superior-vertical) deviated from plan in millimetres and degrees. In order to tackle PSI placement error, a dedicated 3D-printed mould was used. Comparing actual cuts to planned cuts, changing the height of the cutting slot guide on the designed PSI did not deviate accuracy enough to interfere with a tumour resection margin set to maximum 10mm. We have obtained very accurate cuts with the mean deviations(error) for the 3 different designs were: [10mm slot: 0.76 ± 0.52mm, 2.37 ± 1.26°], [15 mm slot: 0.43 ± 0.40 mm, 1.89 ± 1.04°] and [20 mm: 0.74 ± 0.65 mm, 2.40 ± 1.78°] respectively, with no significant difference between mean error for each design overall, but the inferior cuts deviation in mm did show to be more precise with 15 mm cutting slot (p<0.05). Simulating a cut to resect an osteosarcoma, none of the proposed designs introduced error that would interfere with the tumour margin set. Though 15mm showed increased precision on only one parameter, we concluded that 10mm cutting slot would be sufficient for the accuracy needed for this specific surgical intervention. Future work would include comparing PSI slot depth with position of knee implants after arthroplasty, and how optimisation of other design parameters of PSIs can continue to improve accuracy of orthopaedic surgery and allow increase of bone and joint preservation


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 55 - 55
17 Apr 2023
Adlan A AlAqeel M Evans S Davies M Sumathi V Botchu R
Full Access

The primary aim of this study was to compare the clinical outcomes of osteoid osteoma (OO) between the group of patients with the presence of nidus on biopsy samples from radiofrequency ablation (RFA) with those without nidus. Secondly, we aimed to examine other factors that may affect the outcomes of OO reflecting our experience as a tertiary orthopaedic oncology centre. We retrospectively reviewed 88 consecutive patients diagnosed with OO treated with RFA between November 2005 and March 2015, consisting of 63 males (72%) and 25 females (28%). Sixty-six patients (75%) had nidus present in their biopsy samples. Patients’ mean age was 17.6 years (4-53). Median duration of follow-up was 12.5 months (6-20.8). Lesions were located in the appendicular skeleton in seventy-nine patients (90%) while nine patients (10%) had an OO in the axial skeleton. Outcomes assessed were based on patients’ pain alleviation (partial, complete, or no pain improvement) and the need for further interventions. Pain improvement in the patient group with nidus in histology sample was significantly better than the group without nidus (OR 7.4, CI 1.35-41.4, p=0.021). The patient group with nidus on biopsy demonstrated less likelihood of having a repeat procedure compared to the group without nidus (OR 0.092, CI 0.016-0.542, p=0.008). Our study showed significantly better outcomes in pain improvement in appendicular lesions compared to the axially located lesions (p = 0.005). Patients with spinal lesions tend to have relatively poor pain relief than those with appendicular or pelvic lesions (p=0.007). Patients with nidus on histology had better pain alleviation compared to patients without nidus. The histological presence of nidus significantly reduces the chance of repeat interventions. The pain alleviation of OO following RFA is better in patients with appendicular lesions than spinal or axially located lesions


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 133 - 133
2 Jan 2024
Graziani G
Full Access

Decreasing the chance of local relapse or infection after surgical excision of bone metastases is a main goals in orthopedic oncology. Indeed, bone metastases have high incidence rate (up to 75%) and important cross-relations with infection and bone regeneration. Even in patients with advanced cancer, bone gaps resulting from tumor excision must be filled with bone substitutes. Functionalization of these substitutes with antitumor and antibacterial compounds could constitute a promising approach to overcome infection and tumor at one same time. Here, for the first time, we propose the use of nanostructured zinc-bone apatite coatings having antitumor and antimicrobial efficacy. The coatings are obtained by Ionized Jet Deposition from composite targets of zinc and bovine-derived bone apatite. Antibacterial and antibiofilm efficacy of the coatings is demonstrated in vitro against S. Aureus and E. Coli. Anti-tumor efficacy is investigated against MDA- MB-231 cells and biocompatibility is assessed on L929 and MSCs. A microfluidic based approach is used to select the optimal concentration of zinc to be used to obtain antitumor efficacy and avoid cytotoxicity, exploiting a custom gradient generator microfluidic device, specifically designed for the experiments. Then, coatings capable of releasing the desired amount of active compounds are manufactured. Films morphology, composition and ion-release are studies by FEG- SEM/EDS, XRD and ICP. Efficacy and biocompatibility of the coatings are verified by investigating MDA, MSCs and L929 viability and morphology by Alamar Blue, Live/Dead Assay and FEG-SEM at different timepoints. Statistical analysis is performed by SPSS/PC + Statistics TM 25.0 software, one-way ANOVA and post-hoc Sheffe? test. Data are reported as Mean ± standard Deviation at a significance level of p <0.05. Results and Discussion. Coatings have a nanostructured surface morphology and a composition mimicking the target. They permit sustained zinc release for over 14 days in medium. Thanks to these characteristics, they show high antibacterial ability (inhibition of bacteria viability and adhesion to substrate) against both the gram + and gram – strain. The gradient generator microfluidic device permits a fine selection of the concentration of zinc to be used, with many potential perspectives for the design of biomaterials. For the first time, we show that zinc and zinc-based coatings have a selective efficacy against MDA cells. Upon mixing with bone apatite, the efficacy is maintained and cytotoxicity is avoided. For the first time, new antibacterial metal-based films are proposed for addressing bone metastases and infection at one same time. At the same time, a new approach is proposed for the design of the coatings, based on a microfluidic approach. We demonstrated the efficacy of Zn against the MDA-MB-231 cells, characterized for their ability to form bone metastases in vivo, and the possibility to use nanostructured metallic coatings against bone tumors. At the same time, we show that the gradient-generator approach is promising for the design of antitumor biomaterials. Efficacy of Zn films must be verified in vivo, but the dual-efficacy coatings appear promising for orthopedic applications


Background. Metastatic bone patients who require surgery needs to be evaluated in order to maximise quality of life and avoiding functional impairment, minimising the risks connected to the surgical procedures. The best surgical procedure needs to be tailored on survival estimation. There are no current available tool or method to evaluate survival estimation with accuracy in patients with bone metastasis. We recently developed a clinical decision support tool, capable of estimating the likelihood of survival at 3 and 12 months following surgery for patients with operable skeletal metastases. After making it publicly available on . www.PATHFx.org. , we attempted to externally validate it using independent, international data. Methods. We collected data from patients treated at 13 Italian orthopaedic oncology referral centers between 2008 and 2012, then applied to PATHFx, which generated a probability of survival at three and 12-months for each patient. We assessed accuracy using the area under the receiver-operating characteristic curve (AUC), clinical utility using Decision Curve Analysis DCA), and compared the Italian patient data to the training set (United States) and first external validation set (Scandinavia). Results. The Italian dataset contained 287 records with at least 12 months follow-up information. The AUCs for the three-month and 12-month estimates was 0.80 and 0.77, respectively. There were missing data, including the surgeon's estimate of survival that was missing in the majority of records. Physiologically, Italian patients were similar to patients in the training and first validation sets. However notable differences were observed in the proportion of those surviving three and 12-months, suggesting differences in referral patterns and perhaps indications for surgery. Conclusions. PATHFx was successfully validated in an Italian dataset containing missing data. This study demonstrates its broad applicability to European patients, even in centers with differing treatment philosophies from those previously studied


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_9 | Pages 83 - 83
1 May 2017
Spinelli M Piccioli A Maccauro G Forsberg J Wedin R
Full Access

Background. Metastatic bone patients who require surgery needs to be evaluated in order to maximise quality of life and avoiding functional impairment, minimising the risks connected to the surgical procedures. The best surgical procedure needs to be tailored on survival estimation. There are no current available tool or method to evaluate survival estimation with accuracy in patients with bone metastasis. We recently developed a clinical decision support tool, capable of estimating the likelihood of survival at 3 and 12 months following surgery for patients with operable skeletal metastases. After making it publicly available on . www.PATHFx.org. , we attempted to externally validate it using independent, international data. Methods. We collected data from patients treated at 13 Italian orthopaedic oncology referral centers between 2008 and 2012, then applied to PATHFx, which generated a probability of survival at three and 12-months for each patient. We assessed accuracy using the area under the receiver-operating characteristic curve (AUC), clinical utility using Decision Curve Analysis DCA), and compared the Italian patient data to the training set (United States) and first external validation set (Scandinavia). Results. The Italian dataset contained 287 records with at least 12 months follow-up information. The AUCs for the three-month and 12-month estimates was 0.80 and 0.77, respectively. There were missing data, including the surgeon's estimate of survival that was missing in the majority of records. Physiologically, Italian patients were similar to patients in the training and first validation sets. However notable differences were observed in the proportion of those surviving three and 12-months, suggesting differences in referral patterns and perhaps indications for surgery. Conclusions. PATHFx was successfully validated in an Italian dataset containing missing data. This study demonstrates its broad applicability to European patients, even in centers with differing treatment philosophies from those previously studied. Level of Evidence. IV. None of the authors have financial disclosures or conflicts of interest to declare. The study presented did not need the approval by ethics committee


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 15 - 15
1 Dec 2020
Haider Z Aweid B Subramanian P Iranpour F
Full Access

Telemedicine is the delivery of healthcare from a remote location using integrated computer/communication technology. This systematic review aims to explore evidence for telemedicine in orthopaedics to determine its advantages, validity, effectiveness and utilisation particularly during our current pandemic where patient contact is limited. Databases of PubMed, Scopus and CINHAL were systematically searched and articles were included if they involved any form of telephone or video consultation in an orthopaedic population. Findings were synthesised into four themes: patient/clinician satisfaction, accuracy and validity of examination, safety and patient outcomes and cost effectiveness. Quality assessment was undertaken using Cochrane and Joanna Briggs Institute appraisal tools. Twenty studies were included consisting of nine RCTs across numerous orthopaedic subspecialties including fracture care, elective orthopaedics and oncology. Studies revealed high patient satisfaction with telemedicine for convenience, less waiting and travelling time. Telemedicine was cost effective particularly if patients had to travel long distances, required hospital transport or time off work. No clinically significant differences were found in patient examination nor measurement of patient reported outcome measures. Telemedicine was reported to be a safe method of consultation. However, studies were of variable methodological quality with selection bias. In conclusion, evidence suggests that telemedicine in orthopaedics can be safe, cost effective, valid in clinical assessment with high patient/clinician satisfaction. Further work with high quality RCTs is required to elucidate long term outcomes. This systematic review presents up-to-date evidence on the use of telemedicine and provides data for organisations considering its use in the current COVID-19 pandemic and beyond


Bone & Joint Research
Vol. 6, Issue 3 | Pages 137 - 143
1 Mar 2017
Cho HS Park YK Gupta S Yoon C Han I Kim H Choi H Hong J

Objectives

We evaluated the accuracy of augmented reality (AR)-based navigation assistance through simulation of bone tumours in a pig femur model.

Methods

We developed an AR-based navigation system for bone tumour resection, which could be used on a tablet PC. To simulate a bone tumour in the pig femur, a cortical window was made in the diaphysis and bone cement was inserted. A total of 133 pig femurs were used and tumour resection was simulated with AR-assisted resection (164 resection in 82 femurs, half by an orthropaedic oncology expert and half by an orthopaedic resident) and resection with the conventional method (82 resection in 41 femurs). In the conventional group, resection was performed after measuring the distance from the edge of the condyle to the expected resection margin with a ruler as per routine clinical practice.


The Bone & Joint Journal
Vol. 96-B, Issue 12 | Pages 1578 - 1585
1 Dec 2014
Rankin KS Sprowson AP McNamara I Akiyama T Buchbinder R Costa ML Rasmussen S Nathan SS Kumta S Rangan A

Trauma and orthopaedics is the largest of the surgical specialties and yet attracts a disproportionately small fraction of available national and international funding for health research. With the burden of musculoskeletal disease increasing, high-quality research is required to improve the evidence base for orthopaedic practice. Using the current research landscape in the United Kingdom as an example, but also addressing the international perspective, we highlight the issues surrounding poor levels of research funding in trauma and orthopaedics and indicate avenues for improving the impact and success of surgical musculoskeletal research.

Cite this article: Bone Joint J 2014; 96-B:1578–85.