Objectives. Bioresorbable orthopaedic devices with calcium phosphate (CaP) fillers are commercially available on the assumption that increased calcium (Ca) locally drives new bone formation, but the clinical benefits are unknown. Electron beam (EB) irradiation of polymer devices has been shown to enhance the release of Ca. The aims of this study were to: 1) establish the biological safety of EB surface-modified bioresorbable devices; 2) test the release kinetics of CaP from a polymer device; and 3) establish any subsequent beneficial effects on bone repair in vivo. Methods. ActivaScrew Interference (Bioretec Ltd, Tampere, Finland) and poly(L-lactide-co-glycolide) (PLGA)
Background. Medical applications of nanotechnology are promising because it allows the surface of biomaterial to be tailored to optimise the interfacial interaction between the biomaterial and its biological environment. Such interfaces are of interest in the domain of orthopaedic surgery as they could have anti-bacterial functions or could be used as drug delivery systems. The development of orthopaedics is moving towards better integration of biology in implants and surgical techniques, but the mechanical properties of implanted materials are still important for orthopaedic applications. During clinical implantation, implants are subjected to large mechanical stresses. In order to obtain the best performance during clinical use, mechanical properties of implants need to be investigated and understood. Method. We modified the topography of commercial titanium
Currently available fracture fixation devices that were originally developed for healthy bone are often not effective for patients with osteoporosis. Resulting outcomes are unsatisfactory, with longer recovery times, often requiring re-surgery for failed cases. One major issue is the design of bone screws, which can loosen or pull-out from osteoporotic bone. Design improvements are possible, but the development of new screws is a lengthy and expensive process due to the manufacture of the complex geometry involved. The aim of this research was to validate our currently available 3D printing technology in the design, manufacture and testing of screws. Three standard wood screw designs were reverse-engineered using computational modelling and then fabricated in polymeric resin using 3D rapid prototyping on a Stereolithography (SLA) machine. The original metal screws and the 3D screws (n=5 of each) were then inserted into a synthetic bone block (Sawbones, PCF5) representing the mechanical properties of severely osteoporotic cancellous bone. Pull-out tests were conducted in accordance with ASTM 543-13. The three metal screws exhibited pull-out strengths of 125, 74 and 118 N respectively. The 3D printed screws by comparison showed pull-out strengths approximately 15–20 % lower than their metal counterparts. However, when the results were normalised to the material tested, showing the relative changes to the first design, the pattern of results in the metal and 3D printed groups were almost identical (within 3 % of each other), showing excellent correlation. This study is the first to show that 3D Rapid Prototyping can be used in the pre-clinical testing of
Purpose: The purpose of this study was to quantify cortical bone screw pullout force and extraction shear stress in synthetic femurs. The use of commercially available synthetic bone analogues has grown increasingly in the literature. They are commonly employed as human femur surrogates for use in biomechanical assessment of orthopaedic fracture fixation devices. However, whether screw purchase is the same in synthetic products as in human bone has not been addressed previously in the literature. Methods: Three large left adult Third Generation Composite Femurs or 3GCF’s (Model #3306, Pacific Research Labs, Vashon, Washington, USA) were mounted in a test jig that allowed exposure of their cortical mid-shaft area. Standard 3.5 mm (40 mm length)