Advertisement for orthosearch.org.uk
Results 1 - 3 of 3
Results per page:
Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 84 - 84
1 Mar 2021
Mobasheri A
Full Access

Sarcopenia is a progressive and generalized skeletal muscle disorder that involves loss of muscle mass and function. It is associated with increased adverse outcomes including falls, functional decline, frailty and mortality and affects 65% of people over the age of 65 more than half of people aged 80 and above. The factors that cause and worsen sarcopenia are categorised into two groups. The primary aetiological factor is ageing and the secondary factors include disease, physical inactivity, and poor nutrition. Sarcopenia is considered to be ‘primary' (or age-related) when no other specific cause is evident. However, a number of ‘secondary' factors may be present in addition to ageing. Sarcopenia can occur secondary to a systemic or inflammatory disease, including malignancy and organ failure. Physical inactivity is one of the major contributors to the development of sarcopenia, whether due to a sedentary lifestyle or to disease related immobility or disability. Furthermore, sarcopenia can develop as a result of inadequate protein consumption. Biomarkers are objective and quantifiable characteristics of physiological and pathophysiological processes. Biomarkers can be used to predict the development of sarcopenia in older susceptible adults and enable early interventions that can reduce the risk of physical disability, the co-morbidities associated with the loss of muscle mass and the poor health outcomes that result from sarcopenia. Non-invasive imaging technologies can be used as biomarkers to detect loss of skeletal muscle mass in sarcopenia include bone densitometry, computed tomography, ultrasound and magnetic resonance imaging. However, imaging requires sophisticated and expensive equipment that is not available in a resource poor setting. Therefore, markers of skeletal muscle strength and fitness and soluble biochemical markers in blood may be used as alternative biomarkers. Studies on sarcopenia have identified numerous soluble biochemical biomarkers. These biomarkers can be divided into two groups: “muscle-specific” and “non-muscle-specific” biomarkers. Since sarcopenia is associated with rapid skeletal muscle wasting, the skeletal muscle-specific isoform of troponin T may be considerate a useful biomarker of sarcopenia, since high troponin levels in blood are an expression of muscle wasting. Peptides derived from collagen type VI turnover may be potential biomarkers of sarcopenia. We have recently conducted a systematic review to summarize the data from recent mass-spectrometry based proteomic studies of the secretome of skeletal muscle cells in response to disease, exercise or metabolic stress in order to identify the proteins involved in muscle breakdown. Developing robust in vitro models for the study of sarcopenia using primary muscle cells is a high priority as is exploiting the in vitro models to understand catabolic and inflammatory processes and molecular mechanisms involved in sarcopenia. Co-cultures with adipose-derived and other cells may be used to screen for small molecules and biologicals capable of inhibiting the catabolic and inflammatory pathways involved in sarcopenia. This presentation reviews recent progress in this area and outlines opportunities for future research on sarcopenia


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_9 | Pages 11 - 11
1 May 2017
Aquilina A Ahmed I
Full Access

Background. Polytrauma patients are at high risk of systematic inflammatory response syndrome (SIRS) due to an exaggerated unbalanced immune response that can lead to multiple organ failure and increased mortality. This response is often heightened following acute surgical management as a result, damage-control orthopaedics (DCO) was born. This allows the patient to be stabilised using external fixation allowing physiology to improve. This systematic review aims to compare DCO against early total care (ETC) (<24hrs intramedullary nailing) in polytraumatised patients with femoral shaft fractures using a diagnosis of acute lung injury (ALI) as the primary outcome measure. Method. A systematic review of MEDLINE, EMBASE, CENTRAL and AMED was carried out to identify all English language studies comparing ETC versus DCO using ALI as the primary outcome measure. Two authors independently screened the studies and performed data extraction. Risk of bias was assessed using the Cochrane risk of bias tool and the Risk-of-Bias Assessment Tool for Non-randomised Studies. Results. Three studies were selected for final inclusion. One multicentre RCT demonstrated a significantly higher odds ratio (6.69) of ALI in the subgroup receiving ETC compared to DCO. The two other studies were retrospective case series with one reporting no significant difference and the second study reporting a significant reduction in ARDS when a DCO approach was used (7.8% vs 15.1%). Meta-analysis was not possible due to heterogeneity. Conclusions. This review supports evidence that in the more unstable patients (Injury Severity Score≥30) treated surgically for femoral shaft fractures in the first 24 hours, DCO may have a protective effect over ETC for ALI. However further studies with large sample sizes are needed to provide clarity on the subject area. Level of Evidence. 1. Ethics. No approval required given the nature of this study (systematic review)


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 6 | Pages 823 - 827
1 Jun 2006
White TO Clutton RE Salter D Swann D Christie J Robinson CM

The stress response to trauma is the summation of the physiological response to the injury (the ‘first hit’) and by the response to any on-going physiological disturbance or subsequent trauma surgery (the ‘second hit’).

Our animal model was developed in order to allow the study of each of these components of the stress response to major trauma. High-energy, comminuted fracture of the long bones and severe soft-tissue injuries in this model resulted in a significant tropotropic (depressor) cardiovascular response, transcardiac embolism of medullary contents and activation of the coagulation system. Subsequent stabilisation of the fractures using intramedullary nails did not significantly exacerbate any of these responses.