Advertisement for orthosearch.org.uk
Results 1 - 8 of 8
Results per page:
Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_14 | Pages 38 - 38
1 Dec 2022
Tedesco G Evangelisti G Fusco E Ghermandi R Girolami M Pipola V Tedesco E Romoli S Fontanella M Brodano GB Gasbarrini A
Full Access

Neurological complications in oncological and degenerative spine surgery represent one of the most feared risks of these procedures. Multimodal intraoperative neurophysiological monitoring (IONM) mainly uses methods to detect changes in the patient's neurological status in a timely manner, thus allowing actions that can reverse neurological deficits before they become irreversible. The utopian goal of spinal surgery is the absence of neurological complications while the realistic goal is to optimize the responses to changes in neuromonitoring such that permanent deficits occur less frequently as possible. In 2014, an algorithm was proposed in response to changes in neuromonitoring for deformity corrections in spinal surgery. There are several studies that confirm the positive impact that a checklist has on care. The proposed checklist has been specifically designed for interventions on stable columns which is significantly different from oncological and degenerative surgery. The goal of this project is to provide a checklist for oncological and degenerative spine surgery to improve the quality of care and minimize the risk of neurological deficit through the optimization of clinical decision-making during periods of intraoperative stress or uncertainty.

After a literature review on risk factors and recommendations for responding to IONM changes, 3 surveys were administered to 8 surgeons with experience in oncological and degenerative spine surgery from 5 hospitals in Italy. In addition, anesthesiologists, intraoperative neuro-monitoring teams, operating room nurses participated. The members participated in the optimization and final drafting of the checklist. The authors reassessed and modified the checklist during 3 meetings over 9 months, including a clinical validation period using a modified Delphi process.

A checklist containing 28 items to be considered in responding to the changes of the IONM was created. The checklist was submitted for inclusion in the new recommendations of the Italian Society of Clinical Neurophysiology (SINC) for intraoperative neurophysiological monitoring. The final checklist represents the consensus of a group of experienced spine surgeons. The checklist includes the most important and high-performance items to consider when responding to IONM changes in patients with an unstable spine. The implementation of this checklist has the potential to improve surgical outcomes and patient safety in the field of spinal surgery.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_5 | Pages 46 - 46
1 Apr 2018
Niedzielak T Palmer J Stark M Malloy J
Full Access

Introduction

The rate of total hip arthroplasty (THA) surgery continues to dramatically rise in the United States, with over 300,000 procedures performed in 2010. Although a relatively safe procedure, THA is not without complications. These complications include acetabular fracture, heterotopic ossification, implant failure, and nerve palsy to name a few. The rates of neurologic injury for a primary THA are reported as 0.7–3.5%. These rates increase to 7.6% for revision THA. The direct anterior total hip arthroplasty (DATHA) is gaining popularity amongst orthopedic surgeons. Many of these surgeons elect to use the Hana® table during this procedure for optimal positioning capability. Although intraoperative mobility and positioning of the hip joint during DATHA improves operative access, select positions of the limb put certain neurologic structures at risk. The most commonly reported neurologic injuries in this regard are to the sciatic and femoral nerves. To our knowledge, the use of neuromonitoring during DATHA, especially those using the Hana® table, has not been described in the literature.

Methods

The patient was a 60-year-old male with long standing osteoarthritis of the right hip and prior left THA. Somatosensory evoked potential (SSEP) leads were placed bilaterally into the hand (ulnar nerve) as well as the popliteal fossae (posterior tibial nerve). Unilateral electromyography leads were placed into the vastus medialis obliquus, biceps femoris, gastrocnemius, tibialis anterior, and abductor hallucis of the operative limb (Fig. 1). Once the patient was sterilely draped, a direct anterior Smith-Peterson approach to the hip was used.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_6 | Pages 30 - 30
1 Apr 2014
Durst A Bhagat S Mahendran K Grover H Blake J Lutchman L Rai A Crawford R
Full Access

Aim:

An analysis of significant neuromonitoring changes (NMCs) and evaluation of the efficacy of multimodality neuromonitoring in spinal deformity surgery.

Method:

A retrospective review of prospectively collected data in 320 consecutive paediatric and adult spinal deformity operations. Patients were sub-grouped according to demographics (age, gender), diagnosis, radiographic findings (Cobb angles, MR abnormalities) and operative features (surgical approach, duration, levels of fixation). Post-operative neurological deficit was documented and defined as either spinal cord or nerve root deficit.


The Bone & Joint Journal
Vol. 96-B, Issue 7 | Pages 950 - 955
1 Jul 2014
Guzman JZ Baird EO Fields AC McAnany SJ Qureshi SA Hecht AC Cho SK

C5 nerve root palsy is a rare and potentially debilitating complication of cervical spine surgery. Currently, however, there are no guidelines to help surgeons to prevent or treat this complication.

We carried out a systematic review of the literature to identify the causes of this complication and options for its prevention and treatment. Searches of PubMed, Embase and Medline yielded 60 articles for inclusion, most of which addressed C5 palsy as a complication of surgery. Although many possible causes were given, most authors supported posterior migration of the spinal cord with tethering of the nerve root as being the most likely.

Early detection and prevention of a C5 nerve root palsy using neurophysiological monitoring and variations in surgical technique show promise by allowing surgeons to minimise or prevent the incidence of C5 palsy. Conservative treatment is the current treatment of choice; most patients make a full recovery within two years.

Cite this article: Bone Joint J 2014;96-B:950–5.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_17 | Pages 22 - 22
1 Nov 2016
Flatow E
Full Access

Analysis of orthopaedic malpractice claims has shown that highest impact allegations (highest payment dollars per claim) were those that were related to failure to protect anatomic structures in surgical fields. The prevalence of subclinical peripheral neurologic deficit following reverse and anatomic shoulder arthroplasty has been reported to be 47% and 4%, respectively. We propose the following five rules in order to avoid neurovascular injury during shoulder arthroplasty cases:. Pre-operative planning would assure a smooth operation without intra-operative difficulties. Adequate planning would include appropriate imaging, obtaining previous operative reports, complete pre-operative neurovascular examination and requesting the necessary operative equipment. Tug test: It is crucial to palpate the axillary nerve and be aware of its location. The tug test is a systematic technique for locating and protecting the axillary nerve. Neuromonitoring has been utilised in shoulder surgery in the past. Nagda et al showed that nerve alerts during shoulder arthroplasty occurred 56.7% of the time and 50% of the events were with the arm in abduction, external rotation and extension; 76.7% of signals returned to normal with retractor removal and change in arm positioning. We recommend removing all retractors and returning the arm to neutral position several times during surgery, especially during the glenoid exposure when the arm is in abduction and external rotation. Newer commercially available nerve stimulators are extremely useful in locating and protecting neurovascular structures. We recommend brachial plexus exploration and axillary nerve dissection with the aid of a nerve stimulator in all revision cases. Availability of a nerve/microvascular surgeon as an assistant in revision cases for brachial plexus exploration using a microscope is crucial for successful revision surgery


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_15 | Pages 8 - 8
1 Oct 2014
Leong J Curtis M Carter E Cowan J Lehovsky J
Full Access

There is a wide range of reports on the prevalence of neurological injuries during scoliosis surgery, however this should depend on the subtypes and severity of the deformity. Furthermore, anterior versus posterior corrections pose different stresses to the spine, further quantifications of neurological risks are presented. Neuromonitoring data was prospectively entered, and the database between 2006 and 2012 was interrogated. All deformity cases under the age of 21 were included. Tumour, fracture, infection and revision cases were excluded. All “red alerts” were identified and detailed examinations of the neuromonitoring records, clinical notes and radiographs were made. Diagnosis, deformity severity and operative details were recorded. 2290 deformity operations were performed: 2068 scoliosis (1636 idiopathic, 204 neuromuscular, 216 syndromic, and 12 others), 89 kyphosis, 54 growing rod procedures, and 80 operations for hemivertebra. 696 anterior and 1363 posterior operations were performed for scoliosis (8 not recorded), and 38 anterior and 51 posterior kyphosis correction. 67 “red alerts” were identified, there were 14 transient and 6 permanent neurological injuries. 62 were during posterior stage (24 idiopathic, 21 neuromuscular, 15 syndromic (2 kyphosis), 1 growing rod procedure, 1 haemivertebra), and 5 were during anterior stage (4 idiopathic scoliosis and 1 syndromic kyphosis). Average Cobb angle was 88°. 1 permanent injuries were during correction for kyphosis, and 5 were for scoliosis (4 syndromic, 1 neuromuscular, and 1 anterior idiopathic). Common reactions after “red alerts” were surgical pause with anaesthetic interventions (n=39) and the Stagnara wake-up test (n=22). Metalwork was partially removed in 20, revised in 12 and completely removed in 9. 13 procedures were abandoned. The overall risk of permanent neurological injuries was 0.2%, the highest risk groups were posterior corrections for kyphosis and scoliosis associated with a syndrome. 4% of all posterior deformity corrections had “red alerts”, and 0.3% resulted in permanent injuries; compared to 0.6% “red alerts” and 0.3% permanent injuries for anterior surgery. The overall risk for idiopathic scoliosis was 0.06%


The Bone & Joint Journal
Vol. 101-B, Issue 12 | Pages 1563 - 1569
1 Dec 2019
Helenius IJ Saarinen AJ White KK McClung A Yazici M Garg S Thompson GH Johnston CE Pahys JM Vitale MG Akbarnia BA Sponseller PD

Aims

The aim of this study was to compare the surgical and quality-of-life outcomes of children with skeletal dysplasia to those in children with idiopathic early-onset scoliosis (EOS) undergoing growth-friendly management.

Patients and Methods

A retrospective review of two prospective multicentre EOS databases identified 33 children with skeletal dysplasia and EOS (major curve ≥ 30°) who were treated with growth-friendly instrumentation at younger than ten years of age, had a minimum two years of postoperative follow-up, and had undergone three or more lengthening procedures. From the same registries, 33 matched controls with idiopathic EOS were identified. A total of 20 children in both groups were treated with growing rods and 13 children were treated with vertical expandable prosthetic titanium rib (VEPTR) instrumentation.


The Bone & Joint Journal
Vol. 100-B, Issue 6 | Pages 772 - 779
1 Jun 2018
Helenius IJ Oksanen HM McClung A Pawelek JB Yazici M Sponseller PD Emans JB Sánchez Pérez-Grueso FJ Thompson GH Johnston C Shah SA Akbarnia BA

Aims

The aim of this study was to compare the outcomes of surgery using growing rods in patients with severe versus moderate early-onset scoliosis (EOS).

Patients and Methods

A review of a multicentre EOS database identified 107 children with severe EOS (major curve ≥ 90°) treated with growing rods before the age of ten years with a minimum follow-up of two years and three or more lengthening procedures. From the same database, 107 matched controls with moderate EOS were identified.