Advertisement for orthosearch.org.uk
Results 1 - 4 of 4
Results per page:
Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXIII | Pages 170 - 170
1 May 2012
Gnanenthiran S Adie S Harris I
Full Access

Decision-making regarding operative versus non-operative treatment of patients with thoracolumbar burst fractures in the absence of neurological deficits is controversial, and evidence from trials is sparse. We present a systematic review and meta-analysis of randomised trials comparing operative treatment to non-operative treatment in the management of thoracolumbar burst fractures.

With the assistance of a medical librarian, an electronic search of Medline Embase and Cochrane Central Register of Controlled trials was performed. Trials were included if they: were randomided, had radiologically confirmed thoracolumbar (T10-L3) burst fractures, had no neurological deficit, compared operative and non-operative management (regardless of modality used), and had participants aged 18 and over. We examined the following outcomes: pain, using a visual analogue scale (VAS), where 0=no pain and 100=worst pain; function, using the validated Roland Morris Disability Questionnaire (RMDQ); and Kyphosis (measured in degrees). Two randomised trials including 79 patients (41 operative vs. 38 non-operative) were identified. Both trials had similar quality, patient characteristics, outcome measures, rates of follow up, and times of follow up (mean=47 months). Individual patient data meta-analysis (a powerful method of meta-analysis) was performed, since data was made available by the authors. There were no between-group differences in sex, level of fracture, mechanism of injury, follow up rates or baseline pain, kyphosis and RMDQ scores, but there was a borderline difference in age (mean 44 years in operative group vs. 39 in non-operative group, p=0.046).

At final follow up, there were no between group differences in VAS pain (25 in operative group vs. 22 non-operative, p=0.63), RMDQ scores (6.1 in operative group vs. 5.8 non-operative, p=0.85), or change in RMDQ scores from baseline (4.8 in operative group vs. 5.3 non-operative, p=0.70). But both kyphosis at final follow up (11 degrees vs. 16 degrees, p=0.009) and reduction in kyphosis from baseline (1.8 degrees vs. -3.3 degrees, p=0.003) were better in the operative group.

Operative management of thoracolumbar burst fractures appears to improve kyphosis, but does not improve pain or function.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_15 | Pages 56 - 56
7 Nov 2023
Mazibuko T
Full Access

Sacral fractures are often underdiagnosed, but are frequent in the setting of pelvic ring injuries. They are mostly caused by high velocity injuries or they can be pathological in aetiology. We sought to assess the clinical outcomes of the surgically treated unstable sacral fractures, with or without neurological deficits. unstable sacral fractures were included in the study. Single centre, prospectively collected data, retrospective review of patients who sustained vertically unstable fractures of the sacrum who underwent surgical fixation. out of a total of 432 patients with pelvis and acetabulum injuries. fifty six patients met the inclusion criteria. 18 patients had sustained zone one injuries. 14 patients had zone 2 injuries and 10 patients had zone 3 injurie. Operative fixation was performed percutaneously using cannulated screws in 18 patients.. Open fixation of the sacrum using the anterior approach in 6 patients. Posterior approach was indicates in all 10 of the zone 3 injuries of the sacrum. While in 4 patients, combined approaches were used. 3 patients had decompression and spinopelvic fixation. Neurological deficits were present in 16% of the patients. 2 patients presented with neurgenic bladder. Of the 4 patients who had neurological fall out, 3 resolved with posterior decompression and posterior fixation. All 4 neurological deficits were due to taction or compression of the nerve roots. No hardware failures or non unions observed. The rate of neurological deficit was related more to the degree of pelvic ring instability than to a particular fracture pattern. Low rates of complications and successful surgical treatment of sacral fractures is achiavable. Timeous accurate diagnosis mandatory


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_21 | Pages 96 - 96
1 Dec 2016
Rooks K Hansen H Norton J Dzus A Allen L Hedden D
Full Access

The evolution of operative technology has allowed correction of complex spinal deformities. Neurological deficits following spinal instrumentation is a devastating complication and the risk is especially high in those with complex sagittal and coronal plane deformities. Prior to intraoperative evoked potential monitoring, spinal cord function was tested using the Stagnara Wake up test, typically performed after instrumentation once the desired correction has been achieved. This test is limited as it does not reflect the timeframe in which the problem occurred and it may be dangerous to some patients. Intraoperative neuromonitoring allows timely feedback of the effect of instrumentation and curve correction on the spinal cord. Pedicle screws that are malpositioned can result in poor fixation or neuronal injury. Evoked EMG monitoring can aid in accurate placement. A positive EMG response can alert the surgeon to a potential pedicle breech and allow them to reassess the placement of their hardware intraoperatively. The stimulation threshold is affected by the amount of surrounding bone acting as an insulator to electrical conduction and is variable in different regions of the spine. In the non-deformed, lumbar spine stimulation thresholds have been established. Such guidelines have not been well-developed for the thoracic spine, or for severely scoliotic spines. Thus our primary objective was to compare the stimulation threshold of the apical pedicle on the concave side to the stimulation threshold of the pedicles at the upper and lower instrumented levels. Intraoperative EMG stimulation thresholds were done at 192 apical pedicles on the concave side of the deformity and then compared to those thresholds found at 169 terminal level pedicles. Only pedicles for which a stimulation threshold was found were reported and excluded those where a breech was suspected. The lowest stimulation required for an EMG response was documented to a maximum stimulation of 20 mA. The mean threshold at the apex was 16.62 milliamps (mA) compared to 18.25mA at the terminal levels. This was compared with the t-test and showed a statistically significant difference (p<0.05). In this study we report only the thresholds for the concave side, the pedicle that is most likely to be reduced in size. The threshold for stimulation is reduced compared to those seen at the highest and lowest instrumented level. Most of the apexes are located in the mid-thoracic spine with the highest instrumented levels being in the high thoracic spine and the lowest levels being in the lumbar spine. This study provides preliminary evidence that the apical, concave pedicle has a lower threshold than the end pedicles and one cannot rely on established thresholds from different areas of the spine. The surgeon should be cognisant of these differences when instrumenting at the apical level. Ongoing work is examining the convex apex threshold as well as the relationship between the effect of age and a diagnosis other than adolescent idiopathic scoliosis


The Bone & Joint Journal
Vol. 97-B, Issue 3 | Pages 292 - 299
1 Mar 2015
Karthik K Colegate-Stone T Dasgupta P Tavakkolizadeh A Sinha J

The use of robots in orthopaedic surgery is an emerging field that is gaining momentum. It has the potential for significant improvements in surgical planning, accuracy of component implantation and patient safety. Advocates of robot-assisted systems describe better patient outcomes through improved pre-operative planning and enhanced execution of surgery. However, costs, limited availability, a lack of evidence regarding the efficiency and safety of such systems and an absence of long-term high-impact studies have restricted the widespread implementation of these systems. We have reviewed the literature on the efficacy, safety and current understanding of the use of robotics in orthopaedics.

Cite this article: Bone Joint J 2015; 97-B:292–9.