Aims. Natural Language Processing (NLP) offers an automated method to extract data from unstructured free text fields for arthroplasty registry participation. Our objective was to investigate how accurately
To examine whether Natural Language Processing (NLP) using a state-of-the-art clinically based Large Language Model (LLM) could predict patient selection for Total Hip Arthroplasty (THA), across a range of routinely available clinical text sources. Data pre-processing and analyses were conducted according to the Ai to Revolutionise the patient Care pathway in Hip and Knee arthroplasty (ARCHERY) project protocol (. https://www.researchprotocols.org/2022/5/e37092/. ). Three types of deidentified Scottish regional clinical free text data were assessed: Referral letters, radiology reports and clinic letters.
Background. 80% of health data is recorded as free text and not easily accessible for use in research and QI. Natural Language Processing (NLP) could be used as a method to abstract data easier than manual methods. Our objectives were to investigate whether
Introduction. Manual chart review is labor-intensive and requires specialized knowledge possessed by highly-trained medical professionals. The cost and infrastructure challenges required to implement this is prohibitive for most hospitals. Natural language processing (NLP) tools are distinctive in their ability to extract critical information from raw text in the electronic health records (EHR). As a simple proof-of-concept, for the potential application of this technology, we examined its ability to discriminate between a binary classification (periprosthetic fracture [PPFFx] vs. no PPFFx) followed by a more complex classification of the same problem (Vancouver). Methods. PPFFx were identified among all THAs performed at a single academic institution between 1977 and 2015. A training cohort (n = 90 PPFFx) selected randomly by an electronic program was utilized to develop a prototype