Summary. In contrast to the current literature, myofibroblasts are not present in chronic posttraumatic elbow contractures. However, myofibroblasts are present in the acute phase after an elbow fracture and/or dislocation. This suggests a physiological role in normal capsule healing and a potential role in the early phase of posttraumatic contracture formation. Introduction. Elbow stiffness is a common complication after elbow trauma. The elbow capsule is often thickened, fibrotic and contracted upon surgical release. The limited studies available suggest that the capsule is contracted because of fibroblast to myofibroblast differentiation. However, the timeline is controversial and data on human capsules are scarce. We hypothesise that myofibroblasts are absent in normal capsules and early after acute trauma and elevated in patients with posttraumatic elbow contracture. Patients & Methods. We obtained twenty-one human elbow joint capsules within fourteen days after an elbow fracture and/or dislocation and thirty-four capsules from thirty-four patients who had operative release of posttraumatic contractures greater than five months after injury.
Developmental dysplasia of the hip (DDH) is a complex musculoskeletal disease that occurs mostly in children. This study aimed to investigate the molecular changes in the hip joint capsule of patients with DDH. High-throughput sequencing was used to identify genes that were differentially expressed in hip joint capsules between healthy controls and DDH patients. Biological assays including cell cycle, viability, apoptosis, immunofluorescence, reverse transcription polymerase chain reaction (RT-PCR), and western blotting were performed to determine the roles of the differentially expressed genes in DDH pathology.Aims
Methods
Tendon injuries present a major clinical challenge, as they necessitate surgical intervention and are prone to fibrotic progression. Despite advances in physical therapy and surgical technique, tendons fail to return to full native functioning, underlining the need for a biological therapeutic to improve tendon healing.
The August 2014 Shoulder &
Elbow Roundup. 360 . looks at:
Introduction: The rotator cuff is subject to constant pressure from the head of the humerus. This tends to ‘wring out’ the blood supply resulting in a functionally avascular critical zone, although microvessels can be identified. This zone is the site of degeneration and tears. Damage repair under these conditions would be difficult.
Background. There are currently no effective treatments for skeletal muscle fibrosis.
Purpose: To evaluate the role of myofibroblasts in post-traumatic contractures, studies were performed on the myofibroblast marker &
#945;-SMA and myofibroblast up-regulators TGF-&
#946;1 and the ED-A domain of fibronectin (ED-A) in joint capsules during early stages of post-traumatic contractures. Our hypotheses are mRNA expression of &
#945;-SMA, TGF-&
#946;1, and ED-A, and myofibroblast numbers, would increase in joint capsules of post-traumatic contractures when compared to contralateral and normal capsule. Methods: Post-traumatic joint contractures were stimulated in right knees of 24 skeletally mature female rabbits by injury and immobilization. They were equally divided based on time of immobilization: 0-weeks, 2-weeks, 4-weeks, or 6-weeks. Contralateral limbs served as unoperated controls. Normal knee capsules were obtained from three age and gender matched rabbits. Posterior joint capsules were collected for semi-quantitative RT-PCR and mRNA levels of &
#945;-SMA, TGF-&
#946;1, and ED-A were evaluated in all four groups. Primers were normalized to GAPDH.
The objective of this report was to evaluate myofibroblast numbers in human elbow anterior joint capsules. Joint capsules were obtained from six patients with post-traumatic contractures and from six elbow joints of age-matched organ donors. Frozen sections were labeled with α-smooth muscle actin (α-SMA), a marker of myofibroblasts.
Animal models have been developed that allow simulation of post-traumatic joint contracture. One such model involves contracture-forming surgery followed by surgical capsular release. This model allows testing of antifibrotic agents, such as rosiglitazone. A total of 20 rabbits underwent contracture-forming surgery. Eight weeks later, the animals underwent a surgical capsular release. Ten animals received rosiglitazone (intramuscular initially, then orally). The animals were sacrificed following 16 weeks of free cage mobilisation. The joints were tested biomechanically, and the posterior capsule was assessed histologically and via genetic microarray analysis.Aims
Methods
This study aimed to investigate time-dependent gene expression
of injured human anterior cruciate ligament (ACL), and to evaluate
the histological changes of the ACL remnant in terms of cellular
characterisation. Injured human ACL tissues were harvested from 105 patients undergoing
primary ACL reconstruction and divided into four phases based on
the period from injury to surgery. Phase I was <
three weeks,
phase II was three to eight weeks, phase III was eight to 20 weeks,
and phase IV was ≥ 21 weeks. Gene expressions of these tissues were
analysed in each phase by quantitative real-time polymerase chain
reaction using selected markers (collagen types 1 and 3, biglycan,
decorin, α-smooth muscle actin, IL-6, TGF-β1, MMP-1, MMP-2 and TIMP-1).
Immunohistochemical staining was also performed using primary antibodies
against CD68, CD55, Stat3 and phosphorylated-Stat3 (P-Stat3). Objectives
Methods
We treated 22 patients with a diagnosis of primary frozen shoulder resistant to conservative treatment by manipulation under anaesthetic and arthroscopic release of the rotator interval, at a mean time from onset of 15 months (3 to 36). Biopsies were taken from this site and histological and immunocytochemical analysis was performed to identify the types of cell present. The tissue was characterised by the presence of fibroblasts, proliferating fibroblasts and chronic inflammatory cells. The infiltrate of chronic inflammatory cells was predominantly made up of mast cells, with T cells, B cells and macrophages also present. The pathology of frozen shoulder includes a chronic inflammatory response with fibroblastic proliferation which may be immunomodulated.