Paley et al developed a mathematical model to predict height, using age, sex and current height. His predictions were based on growth charts from epidemiological databases, and then validated using 52 children. We looked at a recent large, local database, to assess whether the height multiplier is a reliable tool that can be used in clinical practice. The Avon Longitudinal Study of Parents and Children of the 90s (ALSPAC) is a population based cohort study of 14, 000 contemporary British families. 5363 children had final height measured with an average of 10.5 additional height measurements. The height multiplier equation was defined as height at specific age divided by height at skeletal maturity. No significant difference was observed between the mean results from Paley et al and the ALSPAC data. There was a significant range of results in the ALSPAC data, with a standard deviation of the multiplier of 0.08 for ages 7–15. This large population study shows no significant difference between the historical databases Paley used and the more current European databases. The large range of results shown by the ALSPAC cast doubt on the clinical usefulness of individual results.
Predictions of lower limb growth are based upon historical data, collected from patients who had coexistent poliomyelitis. By utilising standardised longitudinal prospective European data, our objective was to generate superior estimates for the age and rate at which lower limb skeletal maturity is reached; thus improving the timing of epiphysiodesis, for the management of leg length discrepancy. The Avon Longitudinal Study of Parents and Children of the 90s (ALSPAC) is a longitudinal cohort study of children recruited antenatally 2. Using a previously validated