Background.
This case report describes a patient with thoracic plasmacytoma, an uncommon haematological malignancy, who presented with neck pain. Plasmacytoma is a neoplastic proliferation of B cell lineage but is much less common than
Introduction. Hyaluronan (HA) is assumed to have a regulatory role in the bone remodelling process by influencing the behaviour of mesenchymal stem cells (MSCs), osteoblasts and osteoclasts. The hyaluronan synthases (HAS1, HAS2 and HAS3) which are responsible for the formation of HA are expressed in human MSCs (hMSCs). Although HAS are only active when they are located in the plasma membrane and an intracellular storage pool of the HAS is assumed, the mechanisms controlling the intracellular traffic of HAS are hardly investigated. Since chitin synthases and cellulose synthases, members of the same enzyme family like the HAS, are regulated by interaction with the cytoskeleton, we hypothesize that HAS interrelate somehow with the cytoskeleton and that their expression, their transport and/or their activity are regulated via mechanotransduction. Methods and Results. We generated immortalized hMSCs (SCP-1) constitutively expressing eGFP-tagged HAS by lentiviral gene transfer (SCP1-HAS1-eGFP, SCP1-HAS2-eGFP and SCP1-HAS3-eGFP). The expression of the transgene HAS was verified by RT-PCR, western blot, FACS analysis and direct fluorescence microscopy or immunofluorence. The enzymatic activity of the transgene HAS was determined by HA-ELISA and by staining of HA. hMSCs expressing lifeact-RFPruby and HAS-eGFP were investigated in a video timelapse analysis in order to study the putative interaction of HAS-eGFP with the actin cytoskeleton. The HAS-eGFP proteins are globular structured and aligned along the actin filaments. The timelapse pictures show that the HAS-eGFP moves without loss of their alignment to actin. In addition we investigated the impact of shear stress on hMSCs under defined flow conditions. The upregulation of the expression levels of the three HAS isoforms was shown by quantitative real time RT-PCR after exposure to the stimulus. Discussion. Here, we were able to show the regulation of HAS expression via mechanotransduction. At the moment we investigate if HAS activity and their transport towards the plasma membrane are changed by shear stress. Furthermore we generate hMSCs expressing eGFP tagged HAS in their active form. We have first hints for an interaction of the transgene HAS with the actin cytoskeleton. Our cells can be used for further investigation of the functional and regulatory role of HAS in the bone microenvironment. In some bone diseases such as osteogenesis imperfecta,
Demographics changes and the increasing incidence of metastatic bone disease are driving the significant issues of vertebral body (VB) fractures as an important consideration in the quality of life of the elderly. Whilst osteoporotic vertebral fractures have been widely studies both clinically and biomechanically, those fractures arising from metastatic infiltration in the spine are relatively poorly understood. Biomechanical in-vitro assessment of these structurally weaker specimens is an important methodology for gaining an understanding of the mechanics of such fractures in which a key aspect is the development of methodologies for predicting the failure load. Here we report on a method to predict the vertebral strength by combining computed tomography assessment with an engineering beam theory as an alternative to more complex finite element analyses and its verification within a laboratory scenario. Ninety-two human vertebral bodies with 3 different pathologies: osteoporosis,
INTRODUCTION. Over 85% of patients with
Summary. Metastatic spinal disease is a common entity of much debate in terms of ideal surgical treatment. The introduction of MIS can be a game-changer in the treatment of MSD due to less peri-operative morbidity and allowing earlier radiotherapy and/or chemotherapy. Introduction. Less invasive techniques have always been welcome for management of patients with ‘Metastatic Spinal Disorders’. This is because these patients can be poor candidates for extensive / major invasive surgery even though radiologically, there may be an indication for one. The aim of the treatment with Minimal Invasive Fixation (MIS) systems is mainly for ‘pain relief’ than to radically decrease tumour burden or to achieve near total spinal cord decompression, which could be major presentations in these patients. These procedures address the ‘spinal instability’ very well and they can address pain associated with compression fractures resulting from metastatic disease from a solid organ as well as
Osteoporosis is a systemic skeletal disorder characterized by reduced bone mass and deterioration of bone microarchitecture, which results in increased bone fragility and fracture risk. Casein kinase 2-interacting protein-1 (CKIP-1) is a protein that plays an important role in regulation of bone formation. The effect of CKIP-1 on bone formation is mainly mediated through negative regulation of the bone morphogenetic protein pathway. In addition, CKIP-1 has an important role in the progression of osteoporosis. This review provides a summary of the recent studies on the role of CKIP-1 in osteoporosis development and treatment.
This study aimed to explore the role of miR-320a in the pathogenesis of osteoarthritis (OA). Human cartilage cells (C28/I2) were transfected with miR-320a or antisense oligonucleotides (ASO)-miR-320a, and treated with IL-1β. Subsequently the expression of collagen type II alpha 1 (Col2α1) and aggrecan (ACAN), and the concentrations of sulfated glycosaminoglycans (sGAG) and matrix metallopeptidase 13 (MMP-13), were assessed. Luciferase reporter assay, qRT-PCR, and Western blot were performed to explore whether pre-B-cell leukemia Homeobox 3 (PBX3) was a target of miR-320a. Furthermore, cells were co-transfected with miR-320a and PBX3 expressing vector, or cells were transfected with miR-320a and treated with a nuclear factor kappa B (NF-κB) antagonist MG132. The changes in Col2α1 and ACAN expression, and in sGAG and MMP-13 concentrations, were measured again. Statistical comparisons were made between two groups by using the two-tailed paired Objectives
Methods
Previous research has shown an increase in chromosomal aberrations in patients with worn implants. The type of aberration depended on the type of metal alloy in the prosthesis. We have investigated the metal-specific difference in the level of DNA damage (DNA stand breaks and alkali labile sites) induced by culturing human fibroblasts in synovial fluid retrieved at revision arthroplasty. All six samples from revision cobalt-chromium metal-on-metal and four of six samples from cobalt-chromium metal-on-polyethylene prostheses caused DNA damage. By contrast, none of six samples from revision stainless-steel metal-on-polyethylene prostheses caused significant damage. Samples of cobalt-chromium alloy left to corrode in phosphate-buffered saline also caused DNA damage and this depended on a synergistic effect between the cobalt and chromium ions. Our results further emphasise that epidemiological studies of orthopaedic implants should take account of the type of metal alloy used.