Among the advanced technology developed and tested for orthopaedic surgery, the Rizzoli (IOR) has a long experience on custom-made design and implant of devices for joint and bone replacements. This follows the recent advancements in additive manufacturing, which now allows to obtain products also in metal alloy by deposition of material layer-by-layer according to a digital model. The process starts from medical image, goes through anatomical modelling, prosthesis design, prototyping, and final production in 3D printers and in case post-production. These devices have demonstrated already to be accurate enough to address properly the specific needs and conditions of the patient and of his/her physician. These guarantee also minimum removal of the tissues, partial replacements, no size related issues, minimal invasiveness, limited instrumentation. The thorough preparation of the treatment results also in a considerable shortening of the surgical and of recovery time. The necessary additional efforts and costs of custom-made implants seem to be well balanced by these advantages and savings, which shall include the lower failures and revision surgery rates. This also allows thoughtful optimization of the component-to-bone interfaces, by advanced lattice structures, with topologies mimicking the trabecular bone, possibly to promote osteointegration and to prevent infection. IOR's experience comprises all sub-disciplines and anatomical areas, here mentioned in historical order. Originally, several systems of Patient-Specific instrumentation have been exploited in total knee and total ankle replacements. A few massive osteoarticular reconstructions in the shank and foot for severe bone fractures were performed, starting from mirroring the contralateral area. Something very similar was performed also for pelvic surgery in the Oncology department, where massive skeletal reconstructions for bone tumours are necessary. To this aim, in addition to the standard anatomical modelling, prosthesis design, technical/technological refinements, and manufacturing, surgical guides for the correct execution of the osteotomies are also designed and 3D printed. Another original experience is about en-block replacement of vertebral bodies for severe bone loss, in particular for tumours. In this project, technological and biological aspects have also been addressed, to enhance osteointegration and to diminish the risk of infection. In our series there is also a case of successful custom reconstruction of the anterior chest wall. Initial experiences are in progress also for shoulder and elbow surgery, in particular for pre-op planning and surgical guide design in complex re-alignment osteotomies for severe bone deformities. Also in complex flat-foot deformities, in preparation of surgical corrections, 3D digital reconstruction and 3D printing in cheap ABS filaments have been valuable, for indication, planning of surgery and patient communication; with special materials mimicking bone strength, these 3D physical models are precious also for training and preparation of the surgery. In Paediatric surgery severe multi planar & multifocal deformities in children are addressed with personalized pre-op planning and custom cutting-guides for the necessary osteotomies, most of which require custom allografts. A number of complex hip revision surgeries have been performed, where 3D reconstruction for possible final solutions with exact implants on the remaining bone were developed. Elective surgery has been addressed as well, in particular the customization of an original total ankle replacement designed at IOR. Also a novel system with a high-tibial-osteotomy, including a custom cutting jig and the fixation plate was tested. An initial experience for the design and test of custom ankle & foot orthotics is also in progress, starting with 3D surface scanning of the shank and foot including the plantar aspect. Clearly, for achieving these results,
With increasing numbers of total joint arthroplasties being performed, peri-prosthetic fracture incidence is rising, and operative management remains the gold standard. Short-term survivorship up to 12 months has been well-documented but medium to long-term is almost unknown. We present survivorship review from a district general hospital, undertaking 800 primary hip and knee arthroplasties per year. Patients with peri-prosthetic fractures and background total knee replacements were identified using our computer database between 2006–2011. All patients were operated on our site; methods used include open reduction, internal fixation (ORIF) using Axsos (Stryker Newbury) locking plates (28), intra-medullary nailing (1) or complex revision (6) depending on fracture and patient factors and surgeon's preference. Mortality was assessed at 30 days, 12 months and 5 years. Thirty-four patients were identified with a 7:1 female to male ratio and mean age of 76. 75% of patients had their primary arthrodesis at our hospital. There was only 1 plate failure noted requiring revision plating. Mortality at 30 days, 12 months and 5 years were 3.2, 12.5% and 50% respectively. When compared to the literature our time interval from index surgery to fracture is considerably longer (115 vs 42 months). Further multi-centre reviews are required to further asses this unexpected finding. Overall mortality is better than our hip fracture cohort, suggesting that good results can be achieved in District Hospital. The longer-term results are encouraging and can act as a guide for patients with this injury. We recommend that patients are managed in consultant-led,