header advert
Results 1 - 20 of 361
Results per page:
Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 49 - 49
2 Jan 2024
Duquesne K Emmanuel A
Full Access

For many years, marker-based systems have been used for motion analysis. However, the emergence of new technologies, such as 4D scanners provide exciting new opportunities for motion analysis. In 4D scanners, the subjects are measured as a dense mesh, which enables the use of shape analysis techniques. In this talk, we will explore how the combination of the rising new motion analysis methods and shape modelling may change the way we think about movement and its analysis


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVI | Pages 62 - 62
1 Aug 2012
Evans N Hooper G Edwards R Whatling G Sparkes V Holt C Ahuja S
Full Access

Assessing the efficacy of cervical orthoses in restricting spinal motion has historically proved challenging due to a poor understanding of spinal kinematics and the difficulty in accurately measuring spinal motion. This study is the first to use an 8 camera optoelectronic, passive marker, motion analysis system with a novel marker protocol to compare the effectiveness of the Aspen, Aspen Vista, Philadelphia, Miami-J and Miami-J Advanced collars. Restriction of cervical spine motion was assessed for physiological and functional range of motion (ROM). Nineteen healthy volunteers (12 female, 7 male) were fitted with collars by an approved physiotherapist. ProReflex (Qualisys, Sweden) infra-red cameras were used to track the movement of retro-reflective marker clusters attached to the head and trunk. 3-D kinematic data was collected from uncollared and collared subjects during forward flexion, extension, lateral bending and axial rotation for physiological ROM and during five activities of daily living (ADLs). ROM in the three clinical planes was analysed using the Qualisys Track Manager (Qualisys, Sweden) 6 Degree of Freedom calculation to determine head orientation relative to the trunk. For physiological ROM, the Aspen and Philadelphia were more effective at restricting flexion/extension than the Vista (p<0.001), Miami-J (p<0.001 and p<0.01) and Miami-J Advanced (p<0.01 and p<0.05). The Aspen was more effective at restricting rotation compared to the Vista (p<0.001) and Miami-J (p<0.05). The Vista was least effective at restricting lateral bending (p<0.001). Through functional ROM, the Vista was less effective than the Aspen (p<0.001) and other collars (p<0.01) at restricting flexion/extension. The Aspen and Miami-J Advanced were more effective at restricting rotation than the Vista (p<0.01 and p<0.05) and Miami-J (p<0.05). All the collars were comparable when restricting lateral bending. The Aspen is superior to, and the Aspen Vista inferior to, the other collars at restricting cervical spine motion through physiological ROM. Functional ROM observed during ADLs are less than those observed through physiological ROM. The Aspen Vista is inferior to the other collars at restricting motion through functional ROM. The Aspen collar again performs well, particularly at restricting rotation, but is otherwise comparable to the other collars at restricting motion through functional ranges


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_17 | Pages 20 - 20
1 Apr 2013
Breen A Mellor F Breen A
Full Access

Study Purpose. A preliminary study to compare continuous sagittal plane lumbar inter-vertebral kinematics in 10 healthy volunteers in recumbent and weight bearing configurations using quantitative fluoroscopy. Background. There are no direct in-vivo comparisons between continuous weight bearing and non-weight bearing inter-vertebral kinematics in the same healthy individuals. This information will advance our knowledge of spine mechanics and provide reference values for clinical studies. Methods. Ten male healthy control volunteer subjects aged between 30 and 50 underwent a recumbent bending procedure during fluoroscopy. All participants repeated this in weight bearing. Trunk motion was controlled for range and velocity. Digital image sequences (DICOM) of these movements were captured at 15 fps and analysed using automated frame to frame image registration codes in MATLAB (Mathworks). Inter-vertebral motion characteristics, including inter-vertebral angular range of rotation and attainment rate (Laxity), were calculated. Results. These results are the preliminary output of an ongoing study to create a reference database for normal spine kinematics. Comparisons of the motion patterns within and between participants will be demonstrated along with preliminary statistical analysis of range of motion and speed of attainment (laxity) of the angular range within the first 10° of trunk motion after the inter-vertebral motion starts. Laxity is proposed as a new in vivo proxy for the neutral zone where force is replaced by trunk motion near the neutral position. Conclusion. These preliminary comparisons demonstrate the feasibility of establishing a reference database of lumbar spine kinematics to which patient populations can be compared, potentially allowing these to emerge as outcome measures. No conflicts of interest. Sources of funding: PhD studentship: School of Design Engineering and Computing, Bournemouth University. This abstract has not been previously published in whole or substantial part nor has it been presented previously at a national meeting


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 28 - 28
11 Apr 2023
Wither C Lawton J Clarke D Holmes E Gale L
Full Access

Range of Motion (ROM) assessments are routinely used during joint replacement to evaluate joint stability before, during and after surgery to ensure the effective restoration of patient biomechanics. This study aimed to quantify axial torque in the femur during ROM assessment in total hip arthroplasty to define performance criteria against which hip instruments can be verified. Longer term, this information may provide the ability to quantitatively assess joint stability, extending to quantitation of bone preparation and quality. Joint loads measured with strain-gaged instruments in five cadaveric femurs prepared using posterior approach were analysed. Variables such as surgeon-evaluator, trial offset and specimen leg and weight were used to define 13 individual setups and paired with surgeon appraisal of joint tension for each setup. Peak torque loads were then identified for specific motions within the ROM assessment. The largest torque measured in most setups was observed during maximum extension and external rotation of the joint, with a peak torque of 13Nm recorded in a specimen weighing 98kg. The largest torque range (19.4Nm) was also recorded in this specimen. Other motions within the trial reduction showed clear peaks in applied torque but with lower magnitude. Relationships between peak torque, torque range and specimen weight produced an R2 value greater than 0.65. The data indicated that key influencers of torsional loads during ROM were patient weight, joint tension and limb motion. This correlation with patient weight should be further investigated and highlights the need for population representation during cadaveric evaluation. Although this study considered a small sample size, consistent patterns were seen across several users and specimens. Follow-up studies should aim to increase the number of surgeon-evaluators and further vary specimen size and weight. Consideration should also be given to alternative surgical approaches such as the Direct Anterior Approach


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 70 - 70
17 Apr 2023
Flood M Gette P Cabri J Grimm B
Full Access

For clinical movement analysis, optical marker-based motion capture is the gold standard. With the advancement of AI-driven computer vision, markerless motion capture (MMC) has emerged. Validity against the marker-based standard has only been examined for lightly-dressed subjects as required for marker placement. This pilot study investigates how different clothing affects the measurement of typical gait metrics. Gait tests at self-selected speed (4 km/h) were performed on a treadmill (Motek Grail), captured by 9 cameras (Qualisys Miqus, 720p, f=100Hz) and analyzed by a leading MMC application (Theia, Canada). A healthy subject (female, h=164cm, m=54kg) donned clothes between trials starting from lightly dressed (LD: bicycle tight, short-sleeved shirt), adding a short skirt (SS: hip occlusion) or a midi-skirt (MS: partial knee occlusion) or street wear (SW: jeans covering ankle, long-sleeved blouse), the lattern combined with a short jacket (SWJ) or a long coat (SWC). Gait parameters (mean±SD, t=10s) calculated (left leg, mid-stance) were ankle pronation (AP-M), knee flexion (KF-M), pelvic obliquity (PO-M) and trunk lateral lean (TL-M) representing clinically common metrics, different joints and anatomic planes. Four repetitions of the base style (LD) were compared to states of increased garment coverage using the t-test (Bonferroni correction). For most gait metrics, differences between the light dress (LD) and various clothing styles were absent (p>0.0175), small (< 2SD) or below the minimal clinically important differences (MCID). For instance, KF-M was for LD=10.5°±1.7 versus MD=12.0°±0.5 (p=0.07) despite partial knee cover. AP-M measured for LD=5.2°±0.6 versus SW=4.1°±0.7 (p<0.01) despite ankle cover-up. The difference for KF-M between LD=10.5°±1.7 versus SWL=6.0°±0.9, SW and SWJ (7.6°±1.5, p<0.01) indicates more intra-subject gait variability than clothing effect. This study suggests that typical clothings styles only have a small clinically possibly negligible effect on common gait parameters measured with MMC. Thus, patients may not need to change clothes or be instructed to wear specific garments. In addition to avoiding marker placement, this further increases speed, ease and economy of clinical gait analysis with MMC facilitating high volume or routine application


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 65 - 65
17 Nov 2023
Khatib N Schmidtke L Lukens A Arichi T Nowlan N Kainz B
Full Access

Abstract. Objectives. Neonatal motor development transitions from initially spontaneous to later increasingly complex voluntary movements. A delay in transitioning may indicate cerebral palsy (CP). The general movement optimality score (GMOS) evaluates infant movement variety and is used to diagnose CP, but depends on specialized physiotherapists, is time-consuming, and is subject to inter-observer differences. We hypothesised that an objective means of quantifying movements in young infants using motion tracking data may provide a more consistent early diagnosis of CP and reduce the burden on healthcare systems. This study assessed lower limb kinematic and muscle force variances during neonatal infant kicking movements, and determined that movement variances were associated with GMOS scores, and therefore CP. Methods. Electromagnetic motion tracking data (Polhemus) was collected from neonatal infants performing kicking movements (min 50° knee extension-flexion, <2 seconds) in the supine position over 7 minutes. Tracking data from lower limb anatomical landmarks (midfoot inferior, lateral malleolus, lateral knee epicondyle, ASIS, sacrum) were applied to subject-scaled musculoskeletal models (Gait2354_simbody, OpenSim). Inverse kinematics and static optimisation were applied to estimate lower limb kinematics (knee flexion, hip flexion, hip adduction) and muscle forces (quadriceps femoris, biceps femoris) for isolated kicks. Functional principal component analysis (fPCA) was carried out to reduce kicking kinematic and muscle force waveforms to PC scores capturing ‘modes’ of variance. GMOS scores (lower scores = reduced variety of movement) were collected in parallel with motion capture by a trained operator and specialised physiotherapist. Pearson's correlations were performed to assess if the standard deviation (SD) of kinematic and muscle force waveform PC scores, representing the intra-subject variance of movement or muscle activation, were associated with the GMOS scores. Results. The study compared GMOS scores, kinematics, and muscle force variances from a total of 26 infants with a mean corrected gestational age of 39.7 (±3.34) weeks and GMOS scores between 21 and 40. There was a significant association between the SD of the PC scores for knee flexion and the GMOS scores (PC1: R = 0.59, p = 0.002; PC2: R = 0.49, p = 0.011; PC3: R = 0.56, p = 0.003). The three PCs captured variances of the overall flexion magnitude (66% variance explained), early-to-late kick knee extension (20%), and continual to biphasic kicking (6%). For hip flexion, only the SD of PC1 correlated with GMOS scores (PC1: R = 0.52, p = 0.0068), which captured the variance of the overall flexion magnitude (81%). For the biceps femoris, the SD of PC1 and PC3 associated with GMOS scores (PC1: R = 0.50, p = 0.002; PC3: R = 0.45, p = 0.03), which captured the variance of the overall bicep force magnitude (79%) and early-to-late kick bicep activation (8%). Conclusions. Infants with reduced motor development as scored in the GMOS displayed reduced variances of knee and hip flexion and biceps femoris activation across kicking cycles. These findings suggest that combining objectively measured movement variances with existing classification methods could facilitate the development of more consistent and accurate diagnostic tools for early detection of CP. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 42 - 42
1 Mar 2021
Williams S Jones A Wilcox R Isaac G Traynor A Board T Williams S
Full Access

Abstract. Objectives. Impingement in total hip replacements (THRs), including bone-on-bone impingement, can lead to complications such as dislocation and loosening. The aim of this study was to investigate how the location of the anterior inferior iliac spine (AIIS) affected the range of motion before impingement. Methods. A cohort of 25 CT scans (50 hips) were assessed and nine hips were selected with a range of AIIS locations relative to the hip joint centre. The selected CT Scans were converted to solid models (ScanIP) and THR components (DePuy Synthes) were virtually implanted (Solidworks). Flexion angles of 100⁰, 110⁰, and 120⁰ were applied to the femur, each followed by internal rotation to the point of impingement. The lateral, superior and anterior extent of the AIIS from the Centre of Rotation (CoR) of the hip was measured and its effect on the range of motion was recorded. Results. There was found to be a significant (p<0.05) inverse relationship between the ROM of the THR and the lateral measure of the AIIS. Of the three measures, the lateral AIIS measure showed the strongest relationship with ROM to impingement (R=0.73) with the anterior and superior measures resulting in R values of 0.41 and 0.56 respectively. For every millimetre lateral the AIIS location, there was typically a loss of 1.2° of range of motion. With increasing lateralisation, the AIIS was positioned more directly over the femur, thereby reducing the ROM in the THR during high flexion positions. No soft tissue was included in the models which would have affected the ROM. Conclusions. The results from this study have shown that the lateral measure of the AIIS could be a predictor for bone-on-bone impingement. To build confidence, wider study of AIIS location variation is needed, as well as analysis under impingement prone activities of daily living. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 40 - 40
1 Mar 2021
Karunaseelan KJ van Arkel R Jeffers J
Full Access

Abstract. Objectives. Hip joint laxity after total hip arthroplasty (THA) has been considered to cause microseparation and lead to complications, including wear and dislocation. In the native hip, the hip capsular ligaments may tighten at the limits of range of hip motion and provide a passive stabilising force preventing edge loading and reduce the risk of dislocation. Previous attempts to characterise mechanical properties of hip capsular ligaments have been largely variable and there are no cadaveric studies quantifying the force contributions of each ligament in different hip positions. In this study we quantify the passive force contribution of the hip capsular ligaments throughout a complete range of motion (ROM). Methods. Nine human cadaveric hip specimens (6 males and 3 females) with mean age of (76.4 ± 9.0 years) were skeletonised, preserving the capsular ligaments. Prepared specimens were tested in a 6 degree of freedom system to assess ROM with 5 Nm torque applied in external and internal rotation throughout hip flexion and extension. Capsular ligaments were resected in a stepwise fashion to assess internal force contributions of the iliofemoral (superior and inferior), pubofemoral, and ischiofemoral ligaments during ROM. Results. In external rotation, the superior and inferior iliofemoral ligament minimum force contributions were (136.52 ± 27.15 N) in flexion and (82.40 ± 27.85 N) in extension, respectively. In internal rotation, the ischiofemoral ligament force contributions were dominant in adducted-flexion positions and abducted-extension positions. Conclusions. These findings provide insights into the primary capsular structures that stabilise the hip joint in different manoeuvres. This data allows for an improved understanding of which capsular ligaments contribute the most to hip stability and has important implications for choosing surgical approaches and repair strategies to minimise complications related to joint instability. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_9 | Pages 110 - 110
1 May 2017
Hurley R Devitt A
Full Access

Background. New marker free motion analysis systems are being used extensively in the area of sports medicine and physiotherapy. The accuracy and validity of use in an orthopaedic setting have not been fully assessed for these newer marker free motion analysis systems. The aim of this study is to compare leg length and varus/valgus knee measurements performed by leg measurement x-ray, and performed using the new marker free motion analysis system (Organic motion biostage). Methods. Patients attending the orthopaedic department for total knee replacements were recruited. They underwent radiological leg measurement x-ray, clinical leg measurement, and finally assessment using the organic motion biostage system. These were analysed using the motion monitor software, microsoft excel and minitab 16. Results. For 23 patients assessed, all methods showed a statistically significant result (p<0.05) using paired t-tests. This rejects the null hypothesis- indicating that organic motion does not have the accuracy currently to measure leg length or knee varus/valgus angle. Conclusions. Results indicate that the organic motion biostage system- a new marker free motion analysis system, is not feasible currently as a method of accurately measuring leg-length. Given the current modelling methods used by this new system there are limitations, that if addressed may yet allow the system to become a useful clinical tool. These authors feel it still has applications in orthopaedics as a useful, quick, and easy to use method of motion analysis and functional screen in orthopaedic patients, and warrants further investigation. We also present a case of lumbar pedicle subtraction osteotomy, and show how markerless motion analysis is a useful tool for assessing spinal sagittal balance, and its effect on the biomechanics of walking. Level of Evidence. IV


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 148 - 148
4 Apr 2023
Jørgensen P Kaptein B Søballe K Jakobsen S Stilling M
Full Access

Dual mobility hip arthroplasty utilizes a freely rotating polyethylene liner to protect against dislocation. As liner motion has not been confirmed in vivo, we investigated the liner kinematics in vivo using dynamic radiostereometry. 16 patients with Anatomical Dual Mobility acetabular components were included. Markers were implanted in the liners using a drill guide. Static RSA recordings and patient reported outcome measures were obtained at post-op and 1-year follow-up. Dynamic RSA recordings were obtained at 1-year follow-up during a passive hip movement: abduction/external rotation, adduction/internal rotation (modified FABER-FADIR), to end-range and at 45° hip flexion. Liner- and neck movements were described as anteversion, inclination and rotation. Liner movement during modified FABER-FADIR was detected in 12 of 16 patients. Median (range) absolute liner movements were: anteversion 10° (5–20), inclination 6° (2–12), and rotation 11° (5–48) relative to the cup. Median absolute changes in the resulting liner/neck angle (small articulation) was 28° (12–46) and liner/cup angle (larger articulation) was 6° (4–21). Static RSA showed changes in median (range) liner anteversion from 7° (-12–23) postoperatively to 10° (-3–16) at 1-year follow-up and inclination from 42 (35–66) postoperatively to 59 (46–80) at 1-year follow-up. Liner/neck contact was associated with high initial liner anteversion (p=0.01). The polyethylene liner moves over time. One year after surgery the liner can move with or without liner/neck contact. The majority of movement is in the smaller articulation between head and liner


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 63 - 63
17 Nov 2023
Bicer M Phillips AT Melis A McGregor A Modenese L
Full Access

Abstract

OBJECTIVES

Application of deep learning approaches to marker trajectories and ground reaction forces (mocap data), is often hampered by small datasets. Enlarging dataset size is possible using some simple numerical approaches, although these may not be suited to preserving the physiological relevance of mocap data. We propose augmenting mocap data using a deep learning architecture called “generative adversarial networks” (GANs). We demonstrate appropriate use of GANs can capture variations of walking patterns due to subject- and task-specific conditions (mass, leg length, age, gender and walking speed), which significantly affect walking kinematics and kinetics, resulting in augmented datasets amenable to deep learning analysis approaches.

METHODS

A publicly available (https://www.nature.com/articles/s41597-019-0124-4) gait dataset (733 trials, 21 women and 25 men, 37.2 ± 13.0 years, 1.74 ± 0.09 m, 72.0 ± 11.4 kg, walking speeds ranging from 0.18 m/s to 2.04 m/s) was used as the experimental dataset. The GAN comprised three neural networks: an encoder, a decoder, and a discriminator. The encoder compressed experimental data into a fixed-length vector, while the decoder transformed the encoder's output vector and a condition vector (containing information about the subject and trial) into mocap data. The discriminator distinguished between the encoded experimental data from randomly sampled vectors of the same size. By training these networks jointly using the experimental dataset, the generator (decoder) could generate synthetic data respecting specified conditions from randomly sampled vectors. Synthetic mocap data and lower limb joint angles were generated and compared to the experimental data, by identifying the statistically significant differences across the gait cycle for a randomly selected subset of the experimental data from 5 female subjects (73 trials, aged 26–40, weighing 57–74 kg, with leg lengths between 868–931 mm, and walking speeds ranging from 0.81–1.68 m/s). By conducting these comparisons for this subset, we aimed to assess the synthetic data generated using multiple conditions.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 90 - 90
1 Jan 2017
Conconi M Sancisi N Parenti-Castelli V
Full Access

The evaluation of knee stability is fundamental for the clinical discrimination between healthy and pathological joints, for the design and evaluation of prostheses and for the definition of articular models. Knee stability can be quantified by measuring the relation between applied single-axis constant loads and corresponding tibio-femoral displacements (i.e., translations and rotations), namely the joint stiffness, at a given flexion angle. No many studies are available in the literature on this topic [1–3]. In particular, the translations/rotations along/about directions different from the loaded one were not deeply investigated. A fresh frozen lower-limb specimen (female, 63 years old, weight 68 Kg, height 158 cm) was considered. The forefoot and all soft tissues outside the knee were removed by a surgeon, keeping the knee joint capsule intact. A stereophotogrammetric system (Vicon Motion Systems Ltd.) was used to measure the femoro-tibial relative motion by two trackers fixed to the bones, thus introducing no soft-tissue artifact. The specimen was then mounted on a test rig capable to exert general loading conditions [4], and constant loads were applied to the tibia: ±100 N in antero-posterior (AP) and medio-lateral (ML) direction; ±10 Nm about abb-adduction (AA) and in-external (IE) rotations. Loads were applied approximately at the mid-point between the lateral and medial epicondyles, and were kept constant while the femur was flexed over a 135° range. Displacements were defined with respect to the joint natural motion (RTNM), also registered with the same rig. The relative motion of the bones was expressed by a standard joint coordinate system [5]. Considerable translations/rotations appeared also on different directions than the loaded one. At 90° of flexion, an anterior load of +100 N produced 5.5 mm of anterior translation, 10.9 mm of medial translation and 12° of external rotation of the tibia (RTNM). When not directly loaded in ML and IE directions, the tibia translated medially and rotated externally, independently from the sign of the applied load: at 90° of flexion, an AA torque of +10 Nm and −10 Nm produced respectively 5 mm and 8.9 mm of medial translation, and 5.5° and 7.5° of external rotation of the tibia (RTNM). The load/displacement relation was highly non linear also for the loading direction. At 90° of flexion, IE torques of +10 Nm and −10 Nm produced respectively 3.6° of internal and 14.2° of external rotation of the tibia (RTNM). The knee joint structures make the relation between applied loads and bone displacements highly non linear. As a result, a load acting on one direction produces a complex three-dimensional joint motion. Future work will extend the presented analysis on several specimens, also increasing the magnitude and the number of loading conditions


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 42 - 42
2 Jan 2024
Stoddart M
Full Access

Articulating cartilage experiences a multitude of biophysical cues. Due to its primary function in distributing load with near frictionless articulation, it is clear that a major stimulus for cartilage homeostasis and regeneration is the mechanical load it experiences on a daily basis. While these effects are considered when performing in vivo studies, in vitro studies are still largely performed under static conditions. Therefore, an increasing complexity of in vitro culture models is required, with the ultimate aim to recreate the articulating joint as accurately as possible. We have for many years utilized a complex multiaxial load bioreactor capable of applying tightly regulated compression and shear loading protocols. Using this bioreactor, we have been able to demonstrate the mechanical induction of human bone marrow stromal cell (BMSC) chondrogenesis in the absence of exogenous growth factors. Building on previous bioreactor studies that demonstrated the mechanical activation of endogenous TGFβ, and subsequent chondrogenesis of human bone marrow derived MSCs, we have been further increasing the complexity of in vitro models. For example, the addition of high molecular weight hyaluronic acid, a component of synovial fluid, culture medium leads to reduced hypertrophy and increased glycosaminoglycan deposition. The ultimate aim of all of these endeavors is to identify promising materials and therapies during in vitro/ ex vivo studies, therefore reducing the numbers or candidates that are finally tested using in vivo studies. This 3R approach can improve the opportunities for success while leading to more ethically acceptable product development pathways.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 53 - 53
1 Dec 2020
Çil ET Gökçek G Şaylı U Şerif T Subaşı F
Full Access

Foot pain and related problems are quite common in the community. It is reported that 24% of individuals older than 45 experienced foot pain. Also, it is stated that at least two thirds of individuals experiences moderate physical disability due to foot problems. In the absence of evaluation of risk factors such as limited ankle dorsiflexion in the early period of the diseases (Plantar fasciitis, Achilles Tendinopathy e.g.) and the lack of mobile systems with portable remote access, foot pain becomes refractory/chronic foot pain, secondary pathologies and ends with workload of 1., 2. and 3rd level healthcare services. In the literature, manuel and dijital methods have been used to analyze the ankle range of motion (ROM). These studies are generally based on placing protractors on the image and / or angle detection from inclination measurement by using the gyroscope sensor of the mobile device. Some of these applications are effective and they are designed to be suitable for measuring in a clinical setting by a physician or physiotherapist. To the best of our knowledge, there is no system developed to measure real-time ankle ROM remotely with collaboration of the patients. In this research, we proposed to develop an ankle ROM analyze system with smart phone application that can be used comfortably by subjects. We present a case of a 22-year-old male with a symptomatic pes planus. The mobile application, which was used for data collection, was designed and implemented for Android devices. Initially, before the mobile application home page is opened, a consent page was submitted to the acceptance of individual within the scope of Law (KVKK) data privacy. Then, the participant was asked to state his sociodemographic characteristics [age, gender, height, weight] and dominant side. No history of foot-ankle injury, trauma, and surgery was recorded. Activity pain of the foot was 6 according to visual anolog scale (VAS) in the mobile application. His ankle dorsiflexion was 15 ° by manuel goniometer. Besides, server was responsible for storing the collected data and ROM measurement. ROM was calculated by processing the foot video which was sent through the mobile application. During the processing phase, a segmentation model was used which was trained with image process and deep learning methods. With the developed system, we obtained the manual goniometric measurement result with 2 degrees deviation. As the application is calibrated, it is expected to approach the actual measurement of ROM. We can conclude that mobile app-goniometer result in dorsiflexion measurement is a novel promising evaluation method for ankle ROM. it will be easy and practical to detect and monitor risk factor of the diseases, decrease medical costs, provide health services in rural areas, and contribution to life quality and to reduce the workload on physicians and physiotherapist


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_3 | Pages 87 - 87
1 Apr 2018
Fujito T Tomita T Yamazaki T Futai K Ishibashi T Yoshikawa H Sugamoto K
Full Access

Purpose. This study was to investigate the effect of posterior tibial slope (PTS) on the kinematics in the cruciate-retaining total knee arthroplasty (CR-TKA) using 2- to 3- dimensional registration technique. Material & Methods. A total of 75 knees in 58 patients were recruited and categorized into the following two groups according to PTS. Group A was categorized PTS under 7degrees (n = 33) and group B was categorized PTS over 7 degrees (n = 42). The average age of group A and group B at the time of fluoroscopic surveillance date was 73.5 ± 7.4 years and 74.3 ± 4.5 years, respectively and the average follow-up period from operation date to fluoroscopic surveillance date was 13.8 ± 9.3 months and 16.7 ± 8.6 months, respectively. In vivo kinematics during sequential deep knee bending under weight-bearing condition were evaluated using fluoroscopic image analysis and 2- to 3- dimensional registration technique. Range of motion (ROM), axial rotation, anteroposterior (AP) translations of medial and lateral nearest points of the femoral component relative to the tibial component were measured and compared between the two groups. The nearest points were determined by calculating the closest distance between the surfaces of femoral component model and the axial plane of coordinate system of the tibial component. We defined external rotation and anterior translation as positive. P values under 0.05 was defined as statistically significant. Results. The mean PTS in group A and B were 5.5 ± 1.4°and 9.9 ± 1.9°, respectively. There was no statistically significant difference in the degrees of axial rotation from 0° to 110° of flexion between the two groups (4.9 ± 4.2° vs 5.2 ± 4.2°, p > 0.05), respectively. The hyperextension of group B were significantly larger than group A (−2.3 ± 6.6°vs −9.8 ± 8.7°, p <0.05). The ROM of group B were significantly larger than group A (118.7 ± 10.8°vs 128.7 ± 17.7°, p <0.05). However, there was no significant difference in the maximum flexion between the two groups (116.4 ±10.8°vs 118.9±14.5°, p >0.05), respectively. In terms of AP translation, medial nearest points were located significantly more posterior at 0°, 10°, 30°, 40° of flexion in group B compared to group A. There was no significant difference in the location of lateral nearest points between the two groups during all knee range of motion. Discussion/Conclusion. The results shown in this study demonstrated that the PTS influenced the kinematics and ROM under weight-bearing condition in CR-TKA. The large PTS induced great posterior displacement of medial nearest points during early flexion phase and increased hyperextension between the femoral and tibial components


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 52 - 52
1 Mar 2021
Harris A O'Grady C Sensiba P Vandenneucker H Huang B Cates H Christen B Hur J Marra D Malcorps J Kopjar B
Full Access

Patients ≤ 55 years have a high primary TKA revision rate compared to patients >55 years. Guided motion knee devices are commonly used in younger patients yet outcomes remain unknown. In this sub-group analysis of a large multicenter study, 254 TKAs with a second-generation guided motion knee implant were performed between 2011–2017 in 202 patients ≤ 55 years at seven US and three European sites. Revision rates were compared with Australian Joint Registry (AOANJRR) 2017 data. Average age 49.7 (range 18–54); 56.4% females; average BMI 34 kg/m2; 67.1% obese; patellae resurfaced in 98.4%. Average follow-up 4.2 years; longest follow-up six years; 27.5% followed-up for ≥ five years. Of eight revisions: total revision (one), tibial plate replacements (three), tibial insert exchanges (four). One tibial plate revision re-revised to total revision. Revision indications were mechanical loosening (n=2), infection (n=3), peri-prosthetic fracture (n=1), and instability (n=2). The Kaplan-Meier revision estimate was 3.4% (95% C.I. 1.7% to 6.7%) at five years compared to AOANJRR rate of 6.9%. There was no differential risk by sex. The revision rate of the second-generation guided motion knee system is lower in younger patients compared to registry controls


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 91 - 91
4 Apr 2023
ÇİL E Subaşı F Gökçek G Şerif T Şaylı U
Full Access

Recently, several smartphone applications (apps) have been developed and validated for ankle ROM measurement tools like the universal goniometer. This is the first innovative study introduces a new smartphone application to measure ankle joint ROM as a remote solution. This study aimed to assess the correlation between smartphone ROM and universal goniometer measurements, and also report the evaluation of the DijiA app by users.

The study included 22 healthy university students (14F/8M; 20.68±1.72 years) admitted to Yeditepe University. Fourty four feet was measured by both the universal goniometer (UG) and DijiA app. The datas were analyzed through using the intraclass correlation coefficient (ICC). The DijiA app was evaluated by usability testing with representative users.

Pearson correlation coefficient test showed moderate correlation between the DijiA and UG for dorsiflexion (DF) and plantar flexion (PF) measurements (Pearson correlation coefficient: r=0.323, for DF; r=0.435 for PF 95% confidence interval). The application usability was found as high with 76.5 average score and users liked it.

The DijiA app may be a more convenient and easy way to measure ankle DF and PF-ROM than UG. It can be used to evaluate ROM in clinical practice or home using as a personal smartphone.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 168 - 168
1 Jul 2014
Oosterwaal M Telfer S Woodburn J Witlox A Hermus J van Rhijn L Meijer K
Full Access

Summary Statement. An alternative way to assess three dimensional skin motion artefacts of kinematic models is presented and applied to a novel kinematic foot model. Largest skin motion is measured in the tarsal region. Introduction. Motion capture systems are being used in daily clinical practise for gait analysis. Last decade several kinematic foot models have been presented to gain more insight in joint movement in various foot pathologies. No method is known to directly measure bone movement in a clinical setting. Current golden standard is based on measurement of motion of skin markers and translation to joint kinematics. Rigid body assumptions and skin motion artefacts can seriously influence the outcome of this approach and rigorous validation is required before clinical application is feasible. Validation of kinematic models is currently done via comparison with bone pin studies. However, these studies can only assess major bones in a highly invasive way; another problem is the non-synchronous measurement of skin markers and bone pins. Recently the Glasgow Maastricht kinematic foot model, which comprises all 26 foot segments, has been presented. To validate the model we propose a novel non-invasive method for the assessment of skin motion artefact, involving loaded CT data. Patients & Methods. 25 subjects (healthy and pathological feet) have undertaken CT scans. These CT-scans have been obtained in 1 unloaded and 3 varying loading conditions. CT-slices are 3D reconstructed and segmented. The principal axes of the segmented bones were derived from the surface points of the bones. These principal axes are used to compute bone orientation. Subsequently, coordinate systems of bones in the different loading conditions were matched. Markers were translated and rotated to orientations of their corresponding bones. Maximal distance between markers is calculated per subject to asses the influence of skin motion. Results. Preliminary results of 9 subjects show largest positional differences for markers associated with the cuneiform lateralis (5.7 ± 3.2 mm) and cuneiform intermedium (7.7 ± 3.7 mm). Smallest positional differences are found on the hallux proximalis (0.9 ± 0.34mm). Spatial resolution is too small to accurately calculate orientation of smaller bones, therefor distal phalanges 2–5 are not taken into account in the analysis. Discussion/Conclusion. Skin motion is a major cause of inaccuracy in gait analysis. This is the first study presenting an automated non-invasive method to calculate the 3D orientation of skin markers with respect to the coordinate system of the corresponding bone(s). Largest skin motion is measured in the tarsal region. Future work will be in calculation of the effect of skin motion in the accuracy of joint angle calculation


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 51 - 51
1 Mar 2021
Harris A O'Grady C Sensiba P Vandenneucker H Huang B Cates H Christen B Hur J Marra D Malcorps J Kopjar B
Full Access

Outcomes for guided motion primary total knee arthroplasty (TKA) in obese patients are unknown. 1,684 consecutive patients underwent 2,059 primary TKAs with a second-generation guided motion implant between 2011–2017 at three European and seven US sites. Of 2,003 (97.3%) TKAs in 1,644 patients with BMI data: average age 64.5 years; 58.4% females; average BMI 32.5 kg/m2; 13.4% had BMI ≥ 40 kg/m2. Subjects with BMI ≥ 40 kg/m2 had longest length of hospital stay (LOS) at European sites; LOS similar at US sites. Subjects with BMI ≥ 40 kg/m2 (P=0.0349) had longest surgery duration. BMI ≥ 40 kg/m2 had more re-hospitalizations or post-TKA reoperations than BMI < 40 kg/m2 (12.7% and 9.2% at five-year post-TKA, P<0.0495). Surgery duration and long-term complication rates are higher in patients with BMI ≥ 40 kg/m2, but device revision risk is not elevated


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_2 | Pages 18 - 18
1 Jan 2019
Boyd S Silvestros P Hernandez BA Cazzola D Preatoni E Gill HS Gheduzzi S
Full Access

Digital image correlation (DIC) is rapidly increasing in popularity in biomechanical studies of the musculoskeletal system. DIC allows the re-construction of full field displacement and/or strain maps of the surface of an object. DIC systems typically consist of two cameras focussing on the same region of interest. This constrains the angle between the cameras to be relatively narrow when studying specimens characterised by complex geometrical features, giving rise to concerns on the accuracy of the out of plane estimates of movement. The aim of this research was to compare the movement profiles of bony segments measured by DIC and by an optoelectronic motion capture system. Five porcine cervical spine segments (C2-C6) were obtained from the local butcher. These were stripped of all anterior soft tissues while the posterior structures were left intact. A speckle pattern was applied to the anterior aspect of the specimens, while custom made infrared clusters were rigidly attached to the 3 middle vertebral bodies (C3-C5). The specimens were mounted in a custom made impact rig which fully constrained C6 but allowed C2 to translate in the axial direction of the segment. Images were acquired at 4kHz, both for the DIC (Photron Europe Ltd, UK) and motion capture cameras (Qualisys Oqus 400, Sweden). The in-plane and out of plane displacements of each of the VBs were plotted as a function of time and the similarity between the curves thus obtained was analysed using the SPM1D technique which allowed a comparison to be made in terms of t-statistics. No statistical differences were found between the two techniques in all axis of movement, however the out of plane movements were characterised by higher variance which is attributed to the uncertainty arising from the near parallel positioning of the cameras in the experimental set-up