A modular femoral head–neck junction has practical
advantages in total hip replacement. Taper fretting and corrosion
have so far been an infrequent cause of revision. The role of design
and manufacturing variables continues to be debated. Over the past
decade several changes in technology and clinical practice might
result in an increase in clinically significant taper fretting and
corrosion. Those factors include an increased usage of large diameter
(36 mm) heads, reduced femoral neck and taper dimensions, greater
variability in taper assembly with smaller incision surgery, and
higher taper stresses due to increased patient weight and/or physical
activity. Additional studies are needed to determine the role of
taper assembly compared with design, manufacturing and other implant
variables. Cite this article:
Hip implant retrieval analysis is the most important
source of insight into the performance of new materials and designs
of hip arthroplasties. Even the most rigorous in vitro testing will
not accurately simulate the behavior of implant materials and new
designs of prosthetic arthroplasties. Retrieval analysis has revealed
such factors as the effects of gamma-in-air sterilisation of polyethylene,
fatigue failure mechanisms of polymethylmethacrylate bone cement,
fretting corrosion of