Advertisement for orthosearch.org.uk
Results 1 - 20 of 304
Results per page:
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_2 | Pages 55 - 55
10 Feb 2023
Goddard-Hodge D Baker J
Full Access

Reduced cervical spine canal AP diameter is linked to the development of spinal cord injury and myelopathy. This is of particular interest to clinicians in New Zealand, given a unique socio-ethnic make-up and prevalent participation in collision sport. Our study builds upon previous unpublished evidence, by analysing normal cervical spine CT scans to explore morphological differences in the sub-axial cervical spine canal, between New Zealand European, Māori and Paciāca individuals. 670 sub-axial cervical vertebrae (C3-C7) were analysed radiographically using high resolution CT trauma scans, showing no acute pathology with respect to the cervical spine. All measurements were made uPlising mulP-planar reconstruction software to obtain slices parallel to the superior endplate at each vertebral level. Maximal canal diameter was measured in the AP and transverse planes. Statistical analysis was performed using analysis of variance (ANOVA). We included 250 Maori, 250 NZ European and 170 Paciāca vertebrae (455 male, 215 female). Statistically and clinically signiācant differences were found in sagittal canal diameter between all ethnicities, at all spinal levels. NZ European vertebrae demonstrated the largest AP diameter and Paciāca the smallest, at all levels. Transverse canal diameter showed no signiācant difference between ethnicities, however the raatio of AP:transverse diameter was signiācantly different at all spinal levels except C3. Subjective morphological differences in the shape of the vertebral canal were noted, with Māori and Paciāca patients tending towards a flatter, curved canal shape. A previous study of 166 patients (Coldham, G. et al. 2006) found cervical canal AP diameter to be narrower in Māori and Paciāca patients than in NZ Europeans. Our study, evaluating the normal population, conārms these differences are likely reflecPve of genuine variation between these ethniciPes. Future research is required to critically evaluate the morphologic differences noted during this study


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_3 | Pages 41 - 41
23 Feb 2023
Bekhit P Saffi M Hong N Hong T
Full Access

Acromial morphology has been implicated as a risk factor for unidirectional posterior shoulder instability. Studies utilising plain film radiographic landmarks have identified an increased risk of posterior shoulder dislocation in patients with higher acromion positioning. The aims of this study were to develop a reproducible method of measuring this relationship on cross sectional imaging and to evaluate acromial morphology in patients with and without unidirectional posterior shoulder instability. We analysed 24 patients with unidirectional posterior instability. These were sex and age matched with 61 patients with unidirectional anterior instability, as well as a control group of 76 patients with no instability. Sagittal T1 weighted MRI sequences were used to measure posterior acromial height relative to the scapular body axis (SBA) and long head of triceps insertion axis (LTI). Two observers measured each method for inter-observer reliability, and the intraclass correlation coefficient (ICC) calculated. LTI method showed good inter-observer reliability with an ICC of 0.79. The SBA method was not reproducible due suboptimal MRI sequences. Mean posterior acromial height was significantly greater in the posterior instability group (14.2mm) compared to the anterior instability group (7.7mm, p=0.0002) as well when compared with the control group (7.0mm, p<0.0001). A threshold of 7.5mm demonstrated a significant increase in the incidence of posterior shoulder instability (RR = 9.4). We conclude that increased posterior acromial height is significantly associated with posterior shoulder instability. This suggests that the acromion has a role as an osseous restraint to posterior shoulder instability


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_2 | Pages 61 - 61
1 Feb 2020
LaCour M Nachtrab J Ta M Komistek R
Full Access

Introduction. Traditionally, conventional radiographs of the hip are used to assist surgeons during the preoperative planning process, and these processes generally involve two-dimensional X-ray images with implant templates. Unfortunately, while this technique has been used for many years, it is very manual and can lead to inaccurate fits, such as “good” fits in the frontal view but misalignment in the sagittal view. In order to overcome such shortcomings, it is necessary to fully describe the morphology of the femur in three dimensions, therefore allowing the surgeon to successfully view and fit the components from all possible angles. Objective. The objective of this study was to efficiently describe the morphology of the proximal femur based on existing anatomical landmarks for use in surgical planning and/or forward solution modeling. Methods. Seven parameters are needed to fully define femoral morphology: head diameter, head center, neck shaft axis, femoral canal, proximal shaft axis, offset, and neck shaft angle. A previous algorithm has been developed in-house to automatically locate anatomical landmarks of patient specific bone models. Once the bone model has been aligned and scaled based on these landmarks, the femoral head diameter and center are calculated by iteratively fitting a sphere to the corresponding femoral head point cloud. An iterative cylindrical fitting algorithm is used to describe the neck shaft axis. The femoral canal is determined using three steps: 1) the femur is sliced at 10mm increments below the lesser trochanter, 2) the femoral canal boundary is determined at each slice, and 3) the largest circle is fit within each slice's canal boundary. The proximal shaft axis is described by fitting a line to the canal circle center locations. Offset is defined as the distance from the head center to the proximal shaft axis. Finally, the neck shaft angle is the angle between the neck shaft axis and the proximal shaft axis. Results. The goal pertaining to femoral component morphology is to provide meaningful information that can be used to determine how the femoral stem fits within the canal. Regardless of differences in bone sizes and geometries, the algorithm has proven to be successful in describing the femoral morphology of a patient-specific bone model. Discussion. These results lay the groundwork for an automatic stem fitting algorithm, which is described in a subsequent abstract. The morphology knowledge of the femoral head, femoral neck, femoral canal, and various axes can be coupled with known THA component parameters (such as offset, neck length, neck shaft angle, etc.) to allow our algorithms to predict the “best selection” and “best fit” for the femoral stem. This can also be applied to the acetabulum and can then be used as a surgical planning tool as well as a parameter when modeling postoperative predictions. For any figures or tables, please contact authors directly


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_12 | Pages 61 - 61
1 Dec 2022
Zhu S Ogborn D MacDonald PB McRae S Longstaffe R Garofalo J
Full Access

While controversy remains as to the relative benefit of operative (OM) versus non-operative management (NOM) of Achilles tendon ruptures (ATR), few studies have examined the effect on high impact maneuvers such as jumping and hopping. The purpose of this study is to compare functional performance and musculotendinous morphology in patients following OM or NOM for acute ATR. Eligible patients were aged 18-65 years old with an ATR who underwent OM or NOM within three weeks of injury and were at least one-year post injury. Gastrocnemius muscle thickness and Achilles tendon length and thickness were assessed with ultrasound. Functional performance was examined with single-leg hop tests and isokinetic plantar strength at 60o/s and 120o/s. 24 participants completed testing (12/ group). Medial (OM: 2.2 ± 0.4 cm vs 1.9 ± 0.3 cm, NOM 2.15 ± 0.5 cm vs 1.7 ± 0.5 cm; p = 0.002) and lateral (OM 1.8 ± 0.3 cm vs 1.5 ± 0.4 cm, NOM 1.6 ± 0.4 cm vs 1.3 ± 0.5 cm; p = 0.008) gastrocnemius thickness were reduced on the affected limb. The Achilles tendon was longer (OM: 19.9 ± 2.2 cm vs 21.9 ± 1.6 cm; NOM: 19.0 ± 3.7 cm vs 21.4 ± 2.9 cm; p = 0.009) and thicker (OM: 0.48 ± 0.16 cm vs 1.24 ± 0.20 cm; NOM: 0.54 ± 0.08 cm vs 1.13 ± 0.23 cm; p < 0.001) on the affected limb with no differences between groups. Affected limb plantar flexion torque at 20o plantar flexion was reduced at 60o/s (OM: 55.6 ± 20.2 nm vs 47.8 ± 18.3 nm; NOM: 59.5 ± 27.5 nm vs 44.7 ± 21.0 nm; p = 0.06) and 120o/s (OM: 44.6 ± 17.9 nm vs 36.6 ± 15.0 nm; NOM: 48.6 ± 16.9 nm vs 35.8 ± 10.7 nm; p = 0.028) with no group effect. There was no difference in single leg hop performance. Achilles tendon length explained 31.6% (p = 0.003) and 18.0% (p = 0.025) of the variance in plantar flexion peak torque limb symmetry index (LSI) at 60o/s and 120o/s respectively. Tendon length explained 28.6% (p=0.006) and 9.5% (p = 0.087) of LSI when torque was measured at 20o plantar flexion at 60o/s and 120o/s respectively. Conversely, tendon length did not predict affected limb plantar flexion peak torque (nm), angle-specific torque at 20o plantar flexion (nm) and affected limb single leg hop distance (cm) or LSI (%). There was no difference in tendon length between treatment groups and deficits in gastrocnemius thickness and strength are persistent. Deficits in the plantar flexion strength LSI are partially explained by increased tendon length following Achilles tendon rupture, regardless of treatment strategy. Hop test performance is maintained and may be the result of compensatory movements at other joints despite persistent plantarflexion weakness


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_4 | Pages 75 - 75
1 Apr 2019
Boughton O Uemura K Tamura K Takao M Hamada H Cobb J Sugano N
Full Access

Objectives. For patients with Developmental Dysplasia of the Hip (DDH) who progress to needing total joint arthroplasty it is important to understand the morphology of the femur when planning for and undertaking the surgery, as the surgery is often technically more challenging in patients with DDH on both the femoral and acetabular parts of the procedure. 1. The largest number of male DDH patients with degenerative joint disease previously assessed in a morphological study was 12. 2. In this computed tomography (CT) based morphological study we aimed to assess whether there were any differences in femoral morphology between male and female patients with developmental dysplasia undergoing total hip arthroplasty (THA) in a cohort of 49 male patients, matched to 49 female patients. Methods. This was a retrospective study of the pre-operative CT scans of all male patients with DDH who underwent THA at two hospitals in Japan between 2006–2017. Propensity score matching was used to match these patients with female patients in our database who had undergone THA during the same period, resulting in 49 male and 49 female patients being matched on age and Crowe classification. The femoral length, anteversion, neck-shaft angle, offset, canal-calcar ratio, canal flare index, lateral centre-edge angle, alpha angle and pelvic incidence were measured for each patient on their pre-operative CT scans. Results. Significant differences were found in femoral anteversion with a mean male anteversion of 22 ˚ (±14.2), compared to 30˚ (±15.5), in females (p=0.02, Confidence Interval (C.I.) 1.6 to 14.9, Figure 1), offset, with a mean male offset of 31 mm (±6.2), compared to 29 mm (±6.1) in females, (p=0.04, C.I: 0.2 to 4.8), and femoral length with a mean femoral length of 434 mm in males (±22.2), compared to 407 mm in females (±23.9), (p<0.001, C.I: 19.2 to 34.3, Figure 2). No significant differences between male and female patients were found for the other measurements. Discussion. This was the first study of this size assessing femoral morphology in male patients with DDH undergoing THA. Significant differences were found between male and female patients in femoral anteversion, length and offset. This should be taken into account when planning and performing THA in these patients. Based on the findings from this study, a more anteverted femoral neck can be expected at the time of surgery in a female patient with DDH undergoing total hip arthroplasty, compared to a male patient


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_20 | Pages 64 - 64
1 Dec 2017
Asseln M Hänisch C Schick F Radermacher K
Full Access

In total knee arthroplasty (TKA) the implant design is one key factor for a proper functional restoration of the diseased knee. Therefore, detailed knowledge on the shape (morphology) is essential to guide the design process. In literature, the morphology has been extensively studied revealing differences, e.g. between ethnicity and gender. However, it is still unclear in which way gender-specific morphological differences are sexual dimorphism or explained by differences in size. The aim of this study was to investigate the morphology of the distal femur under gender-specific aspects for a large group of patients. Statistical analysis was used to reveal significant differences and subsequent correlation analysis to normalise the morphology. A dataset of n=363 segmented distal femoral bone surface reconstructions (229 female, 134 male) were randomly collected from a database of patients which underwent TKA. In total, 34 morphological features (distances, angles), quantifying the distal femoral geometry, were determined full automatically. Subsequently, graphs and descriptive statistics were used to check normality and gender-specific differences were analysed by calculating the 95% confidence intervals for women and men separately. Finally, significant differences were normalised by dividing each feature by appropriate distance measurements and confidence intervals were recalculated. Looking at the confidence 95% intervals, 6 of 34 features did not show any significant differences between genders. Remarkably, this primarily involves angular (relative) features whereas distance (absolute) measurements were mostly gender dependent. Then, we normalised all distance measurements and radii according to their direction of measurement: Features defined in medial/lateral (ML) direction were divided by the overall ML width and those following the anterior/posterior direction were normalised based on the overall AP length. The results demonstrated that gender-specific differences mostly disappear by using an adequate normalisation term. In conclusion, implant sizes (femoral components) should not be linearly scaled according to one dimension. Instead, ML and AP directions should be regarded separately (non-isotropic scaling). Taking this into consideration, gender- specific differences might be neglected


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_2 | Pages 3 - 3
1 Feb 2020
Hartwell M Sweeney RHP Marra G Saltzman M
Full Access

Background. Rotator cuff atrophy evaluated with computed tomography scans has been associated with asymmetric glenoid wear and humeral head subluxation in glenohumeral arthritis. Magnetic resonance imaging has increased sensitivity for identifying rotator cuff pathology and has not been used to investigate this relationship. The purpose of this study was to use MRI to assess the association of rotator cuff muscle atrophy and glenoid morphology in primary glenohumeral arthritis. Methods. 132 shoulders from 129 patients with primary GHOA were retrospectively reviewed and basic demographic information was collected. All patients had MRIs that included appropriate orthogonal imaging to assess glenoid morphology and rotator cuff pathology and were reviewed by two senior surgeons. All patients had intact rotator cuff tendons. Glenoid morphology was assigned using the modified-Walch classification system (types A1, A2, B1, B2, B3, C, and D) and rotator cuff fatty infiltration was assigned using Goutallier scores. Results. 46 (35%) of the shoulders had posterior wear patterns (23 type B2s, 23 type B3s). Both the infraspinatus and teres minor independently had significantly more fatty infiltration in B2 and B3 type glenoids compared to type A glenoids (p<0.001). There was a greater imbalance in posterior rotator cuff muscle fatty atrophy in B2 and B3 type glenoids compared to type A glenoids (p<0.001). However, there was no difference in axial plane imbalance between B2 and B3 glenoids (p=1.00). There was increased amount fatty infiltration of the infraspinatus among B2 and B3-type glenoids compared to type A glenoids on multivariate analysis controlling for age and gender (p<0.001). Conclusions. These results identify significant axial plane rotator cuff muscle imbalances in B2 and B3-type glenoids compared to concentrically worn glenoids, favoring a relative increase in fatty infiltration of the infraspinatus and teres minor compared to the subscapularis in glenoids with patterns of posterior wear. For any figures or tables, please contact authors directly


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 113 - 113
1 Jul 2020
Badre A Perrin M Albakri K Suh N Lalone E
Full Access

Distal radius fractures are the most common upper extremity fracture. The incidence is significantly higher in elderly females with osteoporotic bone. When surgery is indicated, volar locking plates (VLPs) allow for rigid fixation particularly in comminuted fractures with poor bone quality. Although numerous studies have shown the importance of plate placement to avoid soft tissue complications associated with volar plate fixation, there has been little evidence on the anatomic fit of current VLPs. Moreover, the effect of gender differences in distal radius morphology on anatomic fitting of VLPs has not been studied. The aim of this study was to evaluate the gender difference in distal radius morphology and the accuracy of the fit of a current VLP to CT-based distal radius models. Segmented CT models of ten female (mean age, 89 ± 5 years), and ten male (mean age, 86 ± 4 years) cadaveric wrists were obtained. Micro-CT models of the DePuy-Synthes 4-hole extra-articular (EA) and 8-hole volar column (VC) distal radius VLPs were created. A 3D visualization software was used to simulate appropriate plate placement on to the distal radius models by a fellowship-trained hand surgeon. Volar cortical angles (VCA) of the medial, middle and lateral portion of the distal radius were measured and compared between genders. The accuracy of the fit of the two VLP designs were quantified using the percentage of the watershed line (WSL) overlapped by the plate (WSL overlap), the distance between the WSL and the most distal aspect of the posterior plate (prominence distance) and the percentage of contact between the plate and bone. There were statistically significant gender differences in medial, middle and lateral VCAs (p=.003 medial, p=.0001 middle, p=.002 lateral). VCA ranged from 28° to 36° in females and from 38° to 45° in males. The WSL overlap did not show statistically significant gender differences (male: 5.9%, female: 13.6%, p=.174). However, the difference in prominence distance between different genders approached statistical significance (male: 3.5mm, female: 2.6mm, p=.087). Contact mapping between the plate and bone did not demonstrate a perfect contact in any of our specimens. Thus, contact measurements were categorized into 0.1mm, 0.2mm, and 0.3mm threshold contacts. There were no statistically significant gender differences in any of the threshold categories (0.1mm: p=.84, 0.2mm: p=.97, 0.3mm: p=.99). Our results confirm that there are gender differences in distal radius morphology. Current plate designs incorporate a VCA of 25° which does not match the native VCA of the distal radius in males or females. Although the difference in prominence distance approached statistical significance, there were no statistically significant gender differences in the WSL overlap or the contact threshold values. This lack of statistical significance may be related to the small sample size. This study proposes novel methods of assessing the anatomic fit of current VLPs in a 3D CT-based model that may be used in future studies with a larger sample size. Moreover, this study demonstrated the importance of considering gender differences in distal radius morphology in the design of future generations of implants


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_20 | Pages 28 - 28
1 Dec 2017
Fischer M Schörner S Rohde S Lüring C Radermacher K
Full Access

The sagittal orientation of the pelvis commonly called pelvic tilt has an effect on the orientation of the cup in total hip arthroplasty (THA). Pelvic tilt is different between individuals and changes during activities of daily living. In particular the pelvic tilt in standing position should be considered during the planning of THA to adapt the target angles of the cup patient-specifically to minimise wear and the risk of dislocation. Methods to measure pelvic tilt require an additional step in the planning process, may be time consuming and require additional devices or x-ray imaging. In this study the relationship between three functional parameters describing the sagittal pelvic orientation in standing position and seven morphological parameters of the pelvis was investigated. Correlations might be used to estimate the pelvic tilt in standing position by the morphology of the pelvis in order to avoid additional measuring techniques of pelvic tilt in the planning process of THA. For 18 subjects a semi-automatic process was established to match a 3D-reconstruction of the pelvis from CT scans to orthogonal EOS imaging in standing position and to calculate the morphological and functional parameters of the pelvis subsequently. The two strongest correlations of the linear correlation analysis were observed between morphological pelvic incidence and functional sacral slope (r = 0.78; p = 0.0001) and between morphological pubic symphysis-posterior superior iliac spines-ratio and functional tilt of anterior pelvic plane (r = −0.59; p = 0.0098). The results of this study suggest that patient-specific adjustments to the orientation of the cup in planning of THA without additional measurement of the sagittal pelvic orientation in standing position should be based on the correlation between morphological pelvic incidence and functional sacral slope


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_4 | Pages 119 - 119
1 Jan 2016
Watamori K Ishimaru M Onishi Y Hino K Miura H
Full Access

Introduction. Previous anthropometric studies have reported gender differences in distal femoral morphology. After total knee arthroplasty, females have a higher prevalence of medial or lateral femoral component overhang, which could be responsible for postoperative knee pain and decreased range of motion. Consequently, gender-specific knee prostheses were designed to accommodate female morphology. However, to date, very few studies have investigated the knee morphology of Japanese adults and possible gender differences. The purpose of this study was to examine the distal femoral morphology of Japanese patients, to characterize anatomical differences between men and women, and to evaluate the need to create gender-specific knee prostheses. Material and Methods. We evaluated 107 knees in 17 male and 90 female Japanese patients for total knee arthroplasty (TKA)[fig.1]. The medial-lateral (ML) and anteroposterior (AP) dimensions of the knees at different levels evaluated intraoperative measurement, and ML/AP aspect ratios were calculated. Results. On the distal femoral cut surface, the mean ML widths were 74.8 mm for men and 65.5 mm for women. Such values were generally smaller compared to data from European and North American studies. In this study, the mean ML/AP aspect ratios were 1.21 for men and 1.13 for women, higher than those from non-Asian regions. The ML/AP ratios of Japanese patients were negatively correlated with distal femoral AP length. Discussion. The dimensions and sizes of the human femur have been reported in the literature, as measured by dissection of cadaver knees, plain radiographs or CT scans of living subjects, or other means. Compared to data on knees from European and North American populations, femoral ML/AP ratios were smaller for a given AP length in Japanese individuals. In addition, the mean AP and ML distances of the distal femur of Japanese individuals were smaller than those of Western populations, which could be associated with differences in height or other physical and skeletal characteristics. Several studies reported significant gender difference in the ML/AP ratio. Because of the shapes of the distal femur were more trapezoidal for women and more rectangular for men. After TKA, females have a higher prevalence of medial or lateral femoral component overhang, which could be responsible for postoperative knee pain and decreased range of motion. Our results suggest that gender-specific knee prostheses may prevent such postoperative complications. Conclusions. Japanese women had a relatively narrower femoral width for a given AP length than men. Our study suggests the utility of Japanese-specific implants and provides useful insights for manufacturers to design components of appropriate sizes and aspect ratios for Japanese TKA patients


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 42 - 42
1 Dec 2013
Dai Y Bischoff J
Full Access

Introduction. Tibial components that match the resected proximal tibia may promote accurate rotational alignment and maximize coverage while minimizing overhang in total knee arthroplasty (TKA). Tibial component designs have traditionally been evaluated utilizing an overall anterior-posterior (AP)/medial-lateral (ML) ratio. However, since the tibial plateau is irregularly shaped, such a metric has drawbacks. Here, a detailed set of morphological metrics is used to evaluate six contemporary tibia designs against a multi-ethnic bone database. Methods. Tibial surfaces from 347 subjects, including 97 Indian (50m/47f), 99 Japanese (44m/55f), and 151 Caucasian (85m/66f), were virtually resected following a specific TKA procedure, as previous publications have shown surgical variability minimally impacts tibial resection morphology. Medial and lateral AP dimensions (MAP and LAP), ML width (ML), and medial and lateral anterior radii (MAR and LAR) were measured in a coordinate system constructed on the resected surface based on the neutral rotational axis (Fig. 1A). These metrics, along with anterior radius asymmetry (MAR/LAR), were regressed against ML for each ethnicity. The regressions were then compared with similar measurements obtained from tibial components in six contemporary TKA systems (one asymmetric: Design A; four symmetric: Designs B-E; and one anatomic: Design F). Results. The LAP of all six designs generally agrees well with the three ethnicities investigated. Designs A and F have MAP closer to tibial morphology (Fig. 2), while those of the symmetric designs are smaller than the morphological measurement, especially for tibiae with larger ML (Fig. 2). Across all three ethnicities, there is a positive correlation between anterior radii and ML (Fig. 3), which is reflected in each of the component designs. However, the symmetric designs tend to have bigger LAR and smaller MAR compared to the anatomic tibial morphology. Design F has the closest APs and anterior radii to the morphological measurements in all three ethnicities. The MAR/LAR is 1.8 ± 0.6 for Indian, 1.7 ± 0.4 for Caucasian, and 1.6 ± 0.3 for Japanese, and is negatively correlated with ML (Fig. 1B). However, except for Design F, which closely matches the measured morphology, all of the other designs investigated have constant and significantly lower MAR/LAR across all sizes (1 for the symmetric designs, 1.1 for the asymmetric design). Discussion. The ability to closely match the medial AP dimensions for Designs A and F suggests that anatomic or asymmetric designs with properly sized AP dimensions may reduce the amount of uncovered resected tibial surface compared to symmetric designs. Additionally, the current mismatch of the anterior radii in the asymmetric or symmetric component designs investigated may drive surgical compromise of coverage in order to facilitate rotational alignment or minimize overhang on the anterior regions of the resected tibia. Lastly, only the anatomic Design F accounts for the asymmetric characteristics of the tibial anterior radii, which may assist proper alignment of the tibial component, while the other five designs have either a radius ratio of 1 (Designs B-E) or a very small asymmetry (1.1, Design A). In summary, improved understanding of variations in tibial morphology across ethnicities can support continuous improvement of contemporary tibial component designs


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_18 | Pages 25 - 25
1 Apr 2013
Elmorsy A Whitehouse S Timperley A Veitch S
Full Access

The design of hip replacements is based on the morphology of the proximal femur. Populations living in hard water regions have higher levels of serum calcium and magnesium which promote bone mineralization. A case control study was performed comparing proximal femoral morphology in patients living in soft and hard water regions to determine whether the effect of water hardness had an implication in the future design of hip-prostheses. The proximal femoral morphology of 2 groups of 70 aged and sex matched patients living in hard and soft water regions at mean age 72.24 (range, 50 to 87 years) were measured using an antero-posterior radiograph of the non-operated hip with magnification adjusted. The medullary canal diameter at the level of the lesser trochanter was significantly wider in patients living in the hard water region (mean width 1.9 mm wider; p=0.003). No difference was found at the isthmus, Dorr index, or cortical bone ratio. In conclusion proximal femoral morphology does differ: a wider medullary canal at the level of the lesser trochanter in hard water regions. This size difference is relatively small and is unlikely therefore to affect the mechanics of the current femoral stem prostheses components


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_28 | Pages 122 - 122
1 Aug 2013
Hefny M Rudan J Ellis R
Full Access

INTRODUCTION. Understanding bone morphology is essential for successful computer assisted orthopaedic surgery, where definition of normal anatomical variations and abnormal morphological patterns can assist in surgical planning and evaluation of outcomes. The proximal femur was the anatomical target of the study described here. Orthopaedic surgeons have studied femoral geometry using 2D and 3D radiographs for precise fit of bone-implant with biological fixation. METHOD. The use of a Statistical Shape Model (SSM) is a promising venue for understanding bone morphologies and for deriving generic description of normal anatomy. A SSM uses measures of statistics on geometrical descriptions over a population. Current SSM construction methods, based on Principal Component Analysis (PCA), assume that shape morphologies can be modeled by pure point translations. Complicated morphologies, such as the femoral head-neck junction that has non-rigid components, can be poorly explained by PCA. In this work, we showed that PCA was impotent for processing complex deformations of the proximal femur and propose in its place our Principal Tangent Component (PTC) analysis. The new method used the Lie algebra of affine transformation matrices to perform simple computations, in tangent spaces, that corresponded to complex deformations on the data manifold. RESULTS. Both PCA and PTC were applied to the proximal femur dataset, from which selected femurs were reconstructed using the accumulation of components. PCA was deemed to have failed to reconstruct the surfaces because it required 65 components to achieve high coverage of the dataset. An important observation was that the head-neck junction was the most difficult section in the femur, requiring more components than other anatomical regions to reconstruct. This finding is consistent with the surgical observation that deformations occur in this junction for abnormal hip morphologies. PTC was successful in recovering 100% of the medical data using the only the first 5 components. We note that the encoding of deformation in PTC accounting for the performance increase. PTC outperformed PCA on the dataset in descriptive compactness. CONCLUSION. A standard SSM construction method was not adequate for analysing proximal femur surfaces because it could not easily model the complexity of non-rigid deformations at the head-neck junction. Principal tangent components, a novel method for using exponential maps on manifolds, accurately reconstructed the anatomical surfaces with very few components. Future work may include extending these concepts to describe joint diseases based on the shape of surfaces derived from volumetric data, such as CT or MRI. In conclusion, we have shown that differential geometry may be provide new insights to computational anatomy applications


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 371 - 371
1 Dec 2013
Wright S Boymans TA Miles T Grimm B Kessler O
Full Access

Introduction. The human body is a complex and continually adapting organism. It is theorised that the morphology of the proximal femur is closely related to that of the distal femur. Patients that have abnormal anatomy in the proximal femur, such as a high femoral neck anteversion angle, may have abnormal anatomy in the distal femur to overcome proximal differences. This phenomenon is of key interest when performing Total Hip Replacement (THR) or Total Knee Replacement (TKR) surgery. The current design and placement of existing hip and knee implants does not account for any correlation between the anatomical parameters of the proximal and distal femur, where bone anatomy may have adapted to compromise for abnormalities. A preliminary study of 21 patients has been carried out to assess the relationship between the proximal and distal femur. The difficulties in defining and measuring key anatomical parameters on the femur have been widely discussed in the literature [1] due to its complex three dimensional geometry. Using CT scans of healthy octogenarians, it was possible to mark key anatomical landmarks which could be used to define various anatomical axes throughout the femur. Correlation analyses could then be carried out on these parameters to assess the relationship between proximal and distal femur morphology. Methods. Each femur was initially realigned along the mechanical axis (MA); defined by joining the centre of the femoral head (FHC) to the centre of the intercondylar notch (INC) [2]. All anatomical landmarks were then identified using the Materialise Mimics v12 software (Figure 1 and 2) and exported into Microsoft Excel for analysis. Key anatomical parameters which were derived from these landmarks included the femoral neck axis (FNA), femoral neck anteversion angle (FNAA) [1–4], condylar twist angle, clinical transepicondylar axis (TEA), trochlea sulcus angle and medial and lateral trochlea twist. A correlation analysis was carried out on SPSS Statistics v20 (IBM) to assess the relationship between proximal and distal anatomical parameters. Results. The correlation analysis displayed a positive linear correlation between the FNAA and the clinical TEA (adjusted R squared = 0.471, p < 0.001) indicating that an abnormally high FNAA is correlated with a higher TEA angle (Figure 3). No strong relationship was found between the FNAA and the additional distal parameters compared, in particular there was no trend between the FNAA and the geometry of the trochlea as measured by the sulcus angle and trochlea twist. Discussion. The morphology of the distal femur seems to be at least partially correlated with the proximal femur and the relationship should be studied further to assess any potential effect on THA and TKA surgery. An extension of this study should assess an increased patient sample size and further anatomical parameters


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_1 | Pages 19 - 19
1 Jan 2013
Thomas G Batra R Kiran A Palmer A Gibbons C Gundle R Hart D Spector T Gill H Javaid M Carr A Arden N Glyn-Jones S
Full Access

Introduction. Subtle deformities of the acetabulum and proximal femur are recognised as biomechanical risk factors for the development of hip osteoarthritis (OA) as well as a cause of hip and groin pain. We undertook this study to examine relationships between a number of morphological measurements of the acetabulum and proximal femur and the hip pain in a 20-year longitudinal study. Methods. In 1989 women of 45–64 years of age were recruited. Each had an AP-Pelvis radiograph at Year-2. These radiographs were analysed using a validated programme for measuring morphology. All morphological measurements were read blinded to outcome. At year 3 all participants were asked whether they experienced hip pain (side specific). This was repeated at visits up to and including 20-years. Logistic regression analysis (with robust standard errors and clustering by subject identifier) was performed using hip pain as a binary outcome. The model adjusted for baseline age, BMI and joint space and included only participants who were pain free on initial questioning. Results. 743 participants were included in the analysis. Median age 74.0. Pain was reported in 14.2% of hips. Logistic regression analyses revealed that extrusion index and LCE were significantly associated with hip pain before and after adjusting for covariates (OR 4.88[95%CI 1.32–17.97, p=0.017] and 0.84[95%CI 0.74–0.96, p=0.012] respectively). Modified triangular index height (MTIH) was also significantly associated after adjusting for covariates (OR 1.10[95%CI 1.01–1.20, p=0.022]). Extrusion index and MTIH were independently associated with hip pain at 20-years when used in the same model. No significant interaction was identified. Conclusions. This study provides evidence that measurements of hip morphology characteristic of previously undiagnosed dysplasia and FAI are predictive of hip pain in a 20-year longitudinal study. MTIH, LCE and Extrusion index were significant predictors of pain. This is the first study to describe these associations between hip morphology and pain in a longitudinal cohort


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_9 | Pages 6 - 6
1 May 2016
Lombardo D Kolk S Frank C Sabesan V
Full Access

Background. Malposition of the glenoid component in total shoulder arthroplasty (TSA) is associated with higher strain patterns and can result in component loosening. Glenoid hardware placement and optimal size remain challenging due to the difficult joint exposure and visualization of anatomical reference landmarks during the procedure. Therefore, understanding both normal and variant patterns of glenoid anatomy is imperative for success in TSA. To better understand individual variations in glenoid morphology, this study aimed to compare the glenoid anatomy in a cohort of male and female patients from the United States (US) and Australia (AUS). Methods. Computed tomography (CT) data were analyzed from 41 male and 35 female shoulders; 39 of which were from a US population and 37 from an AUS population. These data were used to create statistical shape models (SSM) representing the average and ±1 standard deviations of the first mode of variation of each group (Materialise, Leuven, Belgium). All measurements were performed with 3-matic computer assisted design software (Materialise, Leuven, Belgium). On each model, glenoid height was measured as the distance from the most superior to the most inferior point on the glenoid face. Glenoid width was measured as the distance from the most anterior to the most posterior point on the glenoid face. Surface area was measured as the concave surface of the glenoid face (Figure 1). Glenoid vault depth was measured in the midsection of the glenoid face. Results. The overall glenoid dimensions were similar between AUS and US populations with average SSMs having widths of 24.68 and 25.72mm, heights of 34.63 mm and 34.85 mm, vault depths of 31.81 mm and 30.20 mm, and surface areas of 665.8 mm2 and 659.2 mm2 (Figure 2). All measurements were also similar for sex matched SSMs (Figure 3). We did observe differences between males and females within these populations, with males in general having larger glenoids in all parameters measured but the greatest difference was seen in surface area. Discussion. Our findings indicate that glenoid morphology is similar between these populations. This supports the external validity of previous studies of glenoid anatomy in these populations, and the use of similar implants between these groups. The gender differences observed in this study reflect previously reported differences. Interestingly, the glenoid depths were greater than the length of most commercial glenoid pegs (14–20 mm) or RSA screws (15–30 mm), indicating that implant perforation of the glenoid vault is unlikely if surgeons properly place and select appropriate sized glenoid implants in either population


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 120 - 120
1 Sep 2012
Natsume T Nishizuka T Yamamoto M Shinohara T Hirata H
Full Access

Background. Calcium phosphate cement (CPC) is a promising biomaterial which can be used in numerous medical procedures for bone tissue repairing because of its excellent osteoconductivity. An injectable preparation and relatively short consolidation time are particularly useful characteristics of CPC. However, the low strength of CPC and its brittleness restrict its use. One method for toughening brittle CPC is to incorporate fibrous materials into its matrix to create a composite structure. Fibers are widely used to reinforce matrix materials in a variety of areas. Objective. We hypothesized that there must be an optimal fiber length and structure which can balance these conflicting aspects of fiber reinforcement. The purpose of this study is to prove our conjectures that adding a small amount of short fibers significantly improves the hardness and the toughness of CPC while maintaining its injectability with a syringe and that fiber morphologies that have crimps and surface roughness are favorable for reinforcing. Material and Methods. We used 3 types of short fibers of approximately 20–50 micrometer in diameter and 2 mm in length in this study: crimpy wool, crimpy polyethylene and straight polyethylene fibers. All of the materials were prepared by mixing a solvent with CPC powder with or without fiber. We grouped as follow, the control group, the wool group, the crimpy polyethylene group, the straight polyethylene group. After soaking in 37 degrees Celsius Simulated Body Fluid∗∗∗∗∗ for 1, 3, or 7 days, they were tested for each period. Impact strength test by the falling weight and compression test were performed. Result. In the impact strength test, after soaking for 1 day, impact resistance in the wool group was approximately 180 times greater than in the control group. When soaking for 3 days or more, impact resistance of wool group improve better than control group. The impact resistance of the wool group was the greatest among the four groups in soaking for 3 days. In the compression test, the yield strength and ultimate strength of the wool group were significantly higher than ultimate strength of the control group. The wool group has stress–strain curves that are typical of those of ductile materials, whereas the stress–strain curves of the control group resemble those of brittle materials. This indicates that fiber reinforcement drastically alters the physical properties of CPC converting it from brittle to ductile. Conclusion. In the present study, we sought to develop a method for producing injectable fiber-reinforced CPC. We focused on morphology and surface roughness of fiber in the reinforcement of CPC. This study clearly showed that CPC was substantially strengthened and toughened by crimpy short fiber reinforcement. CPC reinforced with short fibers which have morphology similar to wool should be a promising tool for orthopedic surgeons


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 516 - 516
1 Dec 2013
Sabesan V Callanan M Sharma V Ghareeb G Moravek J Wiater JM
Full Access

Background. There has been increased focus on understanding the risk factors associated with scapular notching in reverse shoulder arthroplasty (RSA). The purpose of this study is to evaluate the effect of scapular morphology and surgical technique on the occurrence of scapular notching using the notching index as a comprehensive predictive tool. Methods. Ninety-one patients treated with a primary RSA were followed for a minimum of 24 months. Using a previously published notching index formula ((PSNA × 0.13) + (PGRD)), a notching index value for all patients was calculated. Radiographic assessment of patients were grouped by Nerot grade of scapular notching, group mean differences for prosthetic scapular neck angle (PSNA), peg glenoid rim distance (PGRD), preoperative scapular neck angle (SNA), notching index and clinical outcomes were compared. Results. Seventy-five (82%) of the ninety one shoulders in the study developed scapular notching. There was no significant difference in average notching index for group 1, 31.8 ± 4.4, and group 2, 33.1 ± 7.2. No significant difference was demonstrated between the groups for SNA (102.7° vs. 105.4°, p = 0.3), PSNA (125.8° vs. 124.5°, p = 0.82), PGRD (15.4 mm vs. 16.8 mm, p = 0.47) or in clinical outcomes between groups. Discussion. Our results demonstrated an overall low notch index that lacked specificity in predicting notching for this cohort. These results suggest that perhaps PSNA and prosthetic design are more significant contributors to notching with certain scapular morphology


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_28 | Pages 123 - 123
1 Aug 2013
Luria S Schwartz Y Wollstein R Emelif P Zinger G Peleg E
Full Access

Purpose. Knowing the morphology of any fracture, including scaphoid fractures, is important in order to determine the fracture stability and the appropriate fixation technique. Scaphoid fractures are classified according to their radiographic appearance, and simple transverse waist fractures are considered the most common. There is no description in the literature of the 3-dimensional morphology of scaphoid fractures. Our hypothesis was that most scaphoid fractures are not perpendicular to its long axis, i.e. they are not simple transverse fractures. Methods. A 3-dimensional analysis was performed of CT scans of acute scaphoid fractures, conducted at two medical centres during a period of 6 years. A total of 124 scans were analysed (Amira Dev 5.3, Visage Imaging Inc). Thirty of the fractures were displaced and virtually reduced. Anatomical landmarks were marked on the distal radius articular surface in order to orient the scaphoid in the wrist. Shape analysis of the scaphoids and a calculation of the best fitted planes to the fractures were carried out implementing principal component analysis. The angles between the scaphoid's first principal axis to the fracture plane, articular plane and to the palmar-dorsal direction were measured. The fractures were analysed both for location (proximal, waist and distal) and for displacement. Results. There were 86 fractures of the waist (76 percent), 13 of the distal third and 25 of the proximal third. The average angle between the first principal axis of the scaphoid and the fracture plane was 52.6 degrees (SD 17) for all fractures, 55.6 degrees (SD 17.2) for the waist fractures, both differing significantly from a right angle (p<0.001). The majority of fractures were found to be horizontal oblique. We found no difference between the angles of the waist fractures which were displaced and those that were not displaced. In contrast, a significant difference was found between the displaced and non-displaced fractures when evaluating the orientation of the scaphoid long axis in relation to the articular plane (139.8 degrees with reduction versus 148.2 without; p=0.036). Conclusions. Most waist fractures were found to be horizontal oblique in relation to the long axis of the scaphoid and not transverse. Although the fracture angle could not explain displacement of the fracture, we found that the orientation of the scaphoid's long axis in relation to the radial articular surface was correlated with fracture displacement. According to these findings, fixation of all fractures along the long axis of the scaphoid should not be the optimal mode of fixation. Optimal fixation of acute scaphoid fractures may call for better analysis of each fracture configuration and the fixation should be guided by this analysis


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_28 | Pages 86 - 86
1 Aug 2013
Luria S Schwartz Y Wollstein R Emelif P Zinger G Peleg E
Full Access

Purpose. Knowing the morphology of any fracture, including scaphoid fractures, is important in order to determine the fracture stability and the appropriate fixation technique. Scaphoid fractures are classified according to their radiographic appearance, and simple transverse waist fractures are considered the most common. There is no description in the literature of the 3-dimensional morphology of scaphoid fractures. Our hypothesis was that most scaphoid fractures are not perpendicular to its long axis, i.e. they are not simple transverse fractures. Methods. A 3-dimensional analysis was performed of CT scans of acute scaphoid fractures, conducted at two medical centers during a period of 6 years. A total of 124 scans were analysed (Amira Dev 5.3, Visage Imaging Inc). Thirty of the fractures were displaced and virtually reduced. Anatomical landmarks were marked on the distal radius articular surface in order to orient the scaphoid in the wrist. Shape analysis of the scaphoids and a calculation of the best fitted planes to the fractures were carried out implementing principal component analysis. The angles between the scaphoid's first principal axis to the fracture plane, articular plane and to the palmar-dorsal direction were measured. The fractures were analysed both for location (proximal, waist and distal) and for displacement. Results. There were 86 fractures of the waist (76 percent), 13 of the distal third and 25 of the proximal third. The average angle between the first principal axis of the scaphoid and the fracture plane was 52.6 degrees (SD 17) for all fractures, 55.6 degrees (SD 17.2) for the waist fractures, both differing significantly from a right angle (p<0.001). The majority of fractures were found to be horizontal oblique. We found no difference between the angles of the waist fractures which were displaced and those that were not displaced. In contrast, a significant difference was found between the displaced and non-displaced fractures when evaluating the orientation of the scaphoid long axis in relation to the articular plane (139.8 degrees with reduction versus 148.2 without; p=0.036). Conclusions. Most waist fractures were found to be horizontal oblique in relation to the long axis of the scaphoid and not transverse. Although the fracture angle could not explain displacement of the fracture, we found that the orientation of the scaphoid's long axis in relation to the radial articular surface was correlated with fracture displacement. According to these findings, fixation of all fractures along the long axis of the scaphoid should not be the optimal mode of fixation. Optimal fixation of acute scaphoid fractures may call for better analysis of each fracture configuration and the fixation should be guided by this analysis