Introduction. The ability to walk over various surfaces such as cobblestones, slopes or stairs is a very patient centric and clinically meaningful mobility outcome. Current wearable sensors only measure step counts or walking speed regardless of such context relevant for assessing gait function. This study aims to improve deep learning (DL) models to classify surfaces of walking by altering and comparing model features and sensor configurations. Method. Using a public dataset, signals from 6 IMUs (Movella DOT) worn on various body locations (trunk, wrist, right/left thigh, right/left shank) of 30 subjects walking on 9 surfaces were analyzed (flat ground, ramps (up/down), stairs (up/down), cobblestones (irregular), grass (soft), banked (left/right)). Two variations of a CNN Bi-directional LSTM model, with different Batch Normalization layer placement (beginning vs end) as well as data reduction to individual sensors (versus combined) were explored and
Introduction. With advances in artificial intelligence, the use of computer-aided detection and diagnosis in clinical imaging is gaining traction. Typically, very large datasets are required to train machine-learning models, potentially limiting use of this technology when only small datasets are available. This study investigated whether pretraining of fracture detection models on large, existing datasets could improve the performance of the model when locating and classifying wrist fractures in a small X-ray image dataset. This concept is termed “transfer learning”. Method. Firstly, three detection models, namely, the faster region-based convolutional neural network (faster R-CNN), you only look once version eight (YOLOv8), and RetinaNet, were pretrained using the large, freely available dataset, common objects in context (COCO) (330000 images). Secondly, these models were pretrained using an open-source wrist X-ray dataset called “Graz Paediatric Wrist Digital X-rays” (GRAZPEDWRI-DX) on a (1) fracture detection dataset (20327 images) and (2) fracture location and classification dataset (14390 images). An orthopaedic surgeon classified the small available dataset of 776 distal radius X-rays (Arbeidsgmeischaft für Osteosynthesefragen Foundation / Orthopaedic Trauma Association; AO/OTA), on which the models were tested. Result. Detection models without pre-training on the large datasets were the least precise when tested on the small distal radius dataset. The model with the best accuracy to detect and classify wrist fractures was the YOLOv8 model pretrained on the GRAZPEDWRI-DX fracture detection dataset (mean average precision at intersection over union of 50=59.7%). This model showed up to 33.6% improved detection precision compared to the same models with no pre-training. Conclusion. Optimisation of machine-learning models can be challenging when only relatively small datasets are available. The findings of this study support the potential of transfer learning from large datasets to improve
Precision health aims to develop personalised and proactive strategies for predicting, preventing, and treating complex diseases such as osteoarthritis (OA). Due to OA heterogeneity, which makes developing effective treatments challenging, identifying patients at risk for accelerated disease progression is essential for efficient clinical trial design and new treatment target discovery and development. To create a reliable and interpretable precision health tool that predicts rapid knee OA progression over a 2-year period from baseline patient characteristics using an advanced automated machine learning (autoML) framework, “Autoprognosis 2.0”. All available 2-year follow-up periods of 600 patients from the FNIH OA Biomarker Consortium were analysed using “Autoprognosis 2.0” in two separate approaches, with distinct definitions of clinical outcomes: multi-class predictions (categorising disease progression into pain and/or radiographic progression) and binary predictions. Models were developed using a training set of 1352 instances and all available variables (including clinical, X-ray, MRI, and biochemical features), and validated through both stratified 10-fold cross-validation and hold-out validation on a testing set of 339 instances.
Introduction. The objective assessment of shoulder function is important for personalized diagnosis, therapies and evidence-based practice but has been limited by specialized equipment and dedicated movement laboratories. Advances in AI-driven computer vision (CV) using consumer RGB cameras (red-blue-green) and open-source CV models offer the potential for routine clinical use. However, key concepts, evidence, and research gaps have not yet been synthesized to drive clinical translation. This scoping review aims to map related literature. Method. Following the JBI Manual for Evidence Synthesis, a scoping review was conducted on PubMed and Scholar using search terms including “shoulder,” “pose estimation,” “camera”, and others. From 146 initial results, 27 papers focusing on clinical applicability and using consumer cameras were included. Analysis employed a Grounded Theory approach guided iterative refinement. Result. Studies primarily used Microsoft Kinect (infrared-based depth sensing, RGB camera; discontinued) or monocular consumer cameras with open-source CV-models, sometimes supplemented by LiDAR (laser-based depth sensing), wearables or markers. Technical validation studies against gold standards were scarce and too inconsistent for comparison. Larger range of motion (RoM) movements were accurately recorded, but smaller movements, rotations and scapula tracking remained challenging. For instance, one larger validation study comparing shoulder angles during arm raises to a marker-based gold-standard reported Pearson's R = 0.98 and a standard error of 2.4deg. OpenPose and Mediapipe were the most used CV-models. Recent efforts try to improve
Abstract. Introduction. Precision health aims to develop personalised and proactive strategies for predicting, preventing, and treating complex diseases such as osteoarthritis (OA), a degenerative joint disease affecting over 300 million people worldwide. Due to OA heterogeneity, which makes developing effective treatments challenging, identifying patients at risk for accelerated disease progression is essential for efficient clinical trial design and new treatment target discovery and development. Objectives. This study aims to create a trustworthy and interpretable precision health tool that predicts rapid knee OA progression based on baseline patient characteristics using an advanced automated machine learning (autoML) framework, “Autoprognosis 2.0”. Methods. All available 2-year follow-up periods of 600 patients from the FNIH OA Biomarker Consortium were analysed using “Autoprognosis 2.0” in two separate approaches, with distinct definitions of clinical outcomes: multi-class predictions (categorising patients into non-progressors, pain-only progressors, radiographic-only progressors, and both pain and radiographic progressors) and binary predictions (categorising patients into non-progressors and progressors). Models were developed using a training set of 1352 instances and all available variables (including clinical, X-ray, MRI, and biochemical features), and validated through both stratified 10-fold cross-validation and hold-out validation on a testing set of 339 instances.