Introduction. The purpose of this study was to demonstrate the feasibility of passively collecting objective data from a commercially available smartphone-based care management platform (sbCMP) and robotic assisted total knee arthroplasty (raTKA). Methods. Secondary data analysis was performed using de-identified data from a commercial database that collected metrics from a sbCMP combined with intraoperative data collection from raTKA. Patients were included in this analysis if they underwent unilateral raTKA between July 2020 and February 2021, and were prescribed the sbCMP (n=131). The population consisted of 76 females and 55 males, with a mean age of 64 years (range, 43 – 81). Pre-operative through six-week post-operative data included step counts from the sbCMP, as well as administration of the KOOS JR. Intraoperative data included surgical times, the hip-knee-ankle angle (HKA), and medial and lateral laxity assessments from the robotic assessment. Data are presented using descriptive statistics. Comparisons were performed using a paired samples t-test, or Wilcoxon Signed-rank test, with significance assessed at p<0.05. A
Objective. Wearable sensors have enabled objective functional data collection from patients before total knee replacement (TKR) and at clinical follow-ups post-surgery whereas traditional evaluation has solely relied on self-reported subjective measures. The timed-up-and-go (TUG) test has been used to evaluate function but is commonly measured using only total completion time, which does not assess joint function or test completion strategy. The current work employs machine learning techniques to distinguish patient groups based on derived functional metrics from the TUG test and expose clinically important functional parameters that are predictive of patient recovery. Methods. Patients scheduled for TKR (n=70) were recruited and instrumented with a wearable sensor system while performing three TUG test trials. Remaining study patients (n=68) also completed three TUG trials at their 2, 6, and 13-week follow-ups. Many patients (n=36) have also participated up to their 26-week appointment. Custom developed software was used to segment recorded tests into sub-activities and extract 54 functional metrics to evaluate op/non-operative knee function. All preoperative TUG samples and their standardized metrics were clustered into two unlabelled groups using the k-means algorithm. Both groups were tracked forward to see how their early functional parameters translated to functional improvement at their three-month assessment. Test total completion time was used to estimate overall functional improvement and to relate findings to existing literature. Patients that completed their 26-week tests were tracked further to their most recent timepoint. Results. Preoperative clustering separated two groups with different test completion times (n=46 vs. n=22 with mean times of 13s vs. 22s). Of the faster preoperative group, 63% of patients maintained their time, 26% improved, and 11% worsened whereas of the slower preoperative group, 27% maintained, 64% improved, and 9% worsened. The high improvement group improved their times by 4.9s (p<0.01) between preoperative and 13-week visits whereas the other group had no significant change. Test times were different between both groups preoperatively (p<0.001) and at 6 (p=0.01) and 13 (p=0.03) weeks but not at 26 weeks (p=0.67). The high improvement group reached an overall improvement of 9s (p<0.01) at 26 weeks whereas the low improvement group still showed no improvement greater than the TUG