We analysed the effects of commonly used medications
on human osteoblastic cell activity in vitro, specifically proliferation
and tissue
Colchicine is often used in the treatment of diseases such as familial Mediterranean fever (FMF) and gout. We have previously reported that patients with FMF who had colchicine on a daily basis and who had a total hip arthroplasty showed no heterotopic ossification after surgery. The mechanism by which colchicine causes this clinical phenomenon has never been elucidated. We therefore evaluated the effect of various concentrations of colchicine on cell proliferation and
Development of more effective diagnostic and therapeutic solutions is vital to tackling the growing challenge of bone diseases and disorders in aging societies. Spatially offset Raman spectroscopy (SORS) enables the chemical specificity of conventional Raman spectroscopy to be combined with sub-surface probing. SORS has successfully been applied to transcutaneous investigations of underlying bone and shows great potential to become an in vivo tool for non-invasive diagnosis of various bone conditions. The volume within the complex hierarchical bone tissue probed by SORS depends on the specimen's optical properties. Understanding the actual sampling depth is important to correctly assign detected chemical changes to specific areas in the bone. This study explores the hypothesis that the effective Raman signal recovery from certain depths requires different spatial offsets depending on the bone
Mesenchymal stromal cells (MSCs) have been intensively researched in the orthopaedic field since they hold great promise for aiding the regeneration of musculoskeletal tissues. While there are a range of postulated surface markers to identify MSCs, currently there are no known cell markers that predict in vivo osteochondral potency. Runt-related transcription factor 2 (Runx2) is considered as an essential transcription factor in osteoblast differentiation [1] and has been shown to physically interact with retinoblastoma protein (pRb), which leads the loss of osteoblast proliferation and the activation of genes concerning terminal differentiation of osteoblasts [2]. The aim of this study was to use adenoviral-mediated gene overexpression/knockdown to investigate the interplay between Runx2 and pRb during in vitro osteogenic differentiation of human bone marrow (hBM)-MSCs. A first generation human adenovirus (hAd) serotype 5 dE/E3 carrying the gene of interest (Runx2 or shRNA-Runx2) were propagated and amplified in AD-293 cells, and purified over successive CsCl gradients. A second generation hAd serotype 5 carrying the gene of interest (Rb1) was generated. High efficiency single or double transduction of undifferentiated hBM-MSCs was achieved using lanthofection [3]. The transduced hBM-MSCs were then differentiated in osteogenic medium (OM) and osteogenic potency was assessed by quantification of alkaline phosphatase (ALP) activity (day 14) and Alizarin red staining (day 28). In addition, cell cultures were assessed for absorbance at OD 450nm, correlating to the refractive index of calcified areas, at days 0, 7, 14, 21 and 28 [4]. Quantitative RT-PCR was used to confirm expression of target genes following viral transduction. Basal medium was used as a control. Untransduced hBM-MSCs cultures grown in OM demonstrated peak calcium deposition at day 28, while the overexpression of either Runx2 or Rb1 accelerated peak calcium deposition to day 21. Consistent with this, Runx2 overexpression increased ALP activity of hBM-MSCs cultured in OM, while Rb1 overexpression enhanced ALP activity of hBM-MSCs cultured in both basal and osteogenic conditions. Co-expression of Runx2 and Rb1 did not further increase ALP activity compared to cells transduced with Runx2 or Rb1 alone. Alizarin red staining revealed that overexpression of either Runx2 or Rb1 increased mineral deposition in hBM-MSCs under basal conditions, although
Repetitive concavities threaded on the surface of bone implants have been already demonstrated to be effective on ectopic bone formation in vivo. The aim of this study was to investigate the effect of concavity on the mineralization process in vitro. The role of implant surface geometry in bone formation has been extensively investigated. Ripamonti and co. investigated the possibility to induce bone formation by threading concavities on the surface of calcium phosphate implants, without the need for exogenous osteogenic soluble factors. The underlying hypothesis was that this geometry, by resembling the hemi-osteon trench observable during osteoclastogenesis, was able to activate the ripple-like cascade of bone tissue induction and morphogenesis. Despite several studies indicating a positive effect of concavities on bone induction, so far no attempts have rationalised this phenomenon by means of in vitro tests. Consequently, this study aimed to evaluate the effect of surface concavities on the mineralization of hydroxyapatite (HA) and beta-tricalciumphosphate (b-TCP) ceramics in vitro. Our hypothesis was that concavities could effectively guide the mineralization process in vitro.Summary Statement
Introduction
Introduction. Endochondral ossification (EO) is the process of bone development via a cartilage template. It involves multiple stages, including chondrogenesis,
Matrix-bound vesicles (MBVs) are embedded within osteoid and function as the site of initial mineral formation. However, they remain insufficiently characterised in terms of biogenesis, composition and function while their relationship with secreted culture medium EVs (sEVs) such as exosomes remains debated. We aimed to define the biogenesis and pro-mineralisation capacity of MBVs and sEVs to understand their potential in regenerative orthopaedics. sEVs and MBVs isolated from conditioned medium (differential ultracentrifugation) and ECM (collagenase digestion and differential ultracentrifugation) of mineralising MC3T3 pre-osteoblast and human bone marrow MSC cultures were characterised by nanoparticle tracking analysis, western blotting, nano-flow cytometry, super resolution microscopy (ONI) and TEM. Immunoprecipitated populations positive for alkaline phosphatase (ALP), a putative marker of
Introduction and Objective. Osteonecrosis of the femoral head (ONFH) is an evolving and disabling condition that often leads to subchondral collapse in late stages. It is the underlying diagnosis for approximately 3%–12% of total hip arthroplasties (THAs) and the most frequent aetiology for young patients undergoing THA. To date, the pathophysiological mechanisms underlying ONFH remain poorly understood. In this study, we investigated whether ONFH without an obvious etiological factor is related to impaired osteoblast activities, as compared to age-matched patients with primary OA. Materials and Methods. We cultured osteoblasts isolated from trabecular bone explants taken from the femoral head of patients with ONFH and from intertrochanteric region of patients with ONFH or with OA and compared their in vitro
Objectives. Osteophytes are products of active endochondral and intramembranous ossification, and therefore could theoretically provide significant efficacy as bone grafts. In this study, we compared the bone
BMP-1 is the major procollagen-C-peptidase activating, besides fibrillar collagen types I-III, several enzymes and growth factors involved in the generation of extracellular matrix. This study investigated the effect of adding and inhibiting BMP-1 directly post fracture. Standardised femoral fractures were stabilized by an intramedullary nail in 12 week-old female C57Bl/6J mice. We injected either 20 µL recombinant active BMP-1, activity buffer or the BMP-1 specific inhibitor “sizzled”. After 7, 14 and 28 days, mice were sacrificed. Femurs were dissected and paraffin slides were prepared. Callus composition was divided into soft tissue, mineralized and cartilaginous callus. Murine MC3T3 pre-osteoblastic cells were kept in culture adding BMP-1 and sizzled during osteoblastic differentiation. Putative cytotoxicity was determined using MTT-vitality assay. Cell calcification, collagen deposition, and BMP-2 and myostatin protein quantity were characterized. Adding BMP-1 displayed a weak positive effect on the outcome. After 7 days, more mineralised callus was present, meanwhile the cartilaginous callus was apparently remodelled at higher rate. In the case of BMP-1 inhibition, we observed more cartilaginous callus, which may indicate reduced stability. In cell culture, we could observe a high interference with
The implantation of endoprosthesis is a routine procedure in orthopaedics. Endoprosthesis are mainly manufactured from ceramics, polymers, metals or metal alloys. To ensure longevity of the implants they should be as biocompatible as possible and ideally have antibacterial properties, to avoid periprosthetic joint infections (PJI). Various antibacterial implant materials have been proposed, but have so far only been used sporadically in patients. PJI is one of the main risk factors for revision surgeries. The aim of the study was to identify novel implant coatings that both exhibit antibacterial properties whilst having optimal biocompatibility. Six different novel implant coatings and surface modifications (EBM TiAl6V4, strontium, TiCuN, TiNbN, gentamicin phosphate (GP), gentamicin phosphate+cationic polymer (GP+CP)) were compared to standard CoCrMo-alloy. The coatings were further characterized with regard to the surface roughness. E. coli and S. capitis were cultured on the modified surfaces to investigate the antibacterial properties. To quantify bacterial proliferation the optical density (OD) was measured and viability was determined using colony forming units (CFU). Murine bone marrow derived macrophages (BMMs) were cultured on the surfaces and differentiated into osteoblasts to quantify the
Our previous research has demonstrated that minor adjustments to in vitro cellular aggregation parameters, i.e. alterations to aggregate size, can influence temporal and spatial mineral depositions within maturing bone cell nodules. What remains unclear, however, is how aggregate size might affect
Integrin α2β1 is one of the major transmembrane receptors for fibrillary collagen. In native bone we could show that the absence of this protein led to a protective effect against age-related osteoporosis. The objective of this study was to elucidate the effects of integrin α2β1 deficiency on fracture repair and its underlying mechanisms. Standardised femoral fractures were stabilised by an intramedullary nail in 12 week old female C57Bl/6J mice (wild type and integrin α2. -/-. ). After 7, 14 and 28 days mice were sacrificed. Dissected femura were subjected to µCT and histological analyses. To evaluate the biomechanical properties, 28-day-healed femura were tested in a torsional testing device. Masson goldner staining, Alizarin blue, IHC and IF staining were performed on paraffin slices. Blood serum of the animals were measured by ELISA for BMP-2. Primary osteoblasts were analysed by in/on-cell western technology and qRT-PCR. Integrin α2β1 deficient animals showed earlier transition from cartilaginous callus to mineralized callus during fracture repair. The shift from chondrocytes over hypertrophic chondrocytes to bone-forming osteoblasts was accelerated. Collagen production was increased in mutant fracture callus. Serum levels of BMP-2 were increased in healing KO mice. Isolated integrin deficient osteoblast presented an earlier expression and production of active BMP-2 during the differentiation, which led to earlier
Osteoporotic fracture has become a major problem in ageing population and often requires prolonged healing time. Low Intensity Pulsed Ultrasound (LIPUS) can significantly enhance fracture healing through alteration of osteocyte lacuno-canalicular network (LCN). DMP1 in osteocytes is responsible for maintaining LCN and
3D spheroid culture is a bridge between standard 2D cell culture and in vivo research which mimics the physiological microenvironment in scaffold-free conditions. Here, this 3D technique is being investigated as a potential method for engineering bone tissue in vitro. However, spheroid culture can exhibit limitations, such as necrotic core formation due to the restricted access of oxygen and nutrients. It is therefore important to determine if spheroids without a sizeable necrotic core can be produced. This study aims to understand necrotic core formation and cell viability in 3D bone cell spheroids using different seeding densities and media formulations. Differentiated rat osteoblasts (dRObs) were seeded in three different seeding densities (1×10. 4. , 5×10. 4. , 1×10 cells) in 96 well U-bottom cell-repellent plates and in three different media i.e., Growth medium (GM),
Abstract. OBJECTIVE. Knee varus malalignment increases medial knee compartment loading and is associated with knee osteoarthritis (OA) progression and severity. 1. Altered biomechanical loading and dysregulation of joint tissue biology drive OA progression, but mechanistic links between these factors are lacking. Subchondral bone structural changes are biomechanically driven, involve bone resorption, immune cell influx, angiogenesis, and sensory nerve invasion, and contribute to joint destruction and pain. 2. We have investigated mechanisms underlying this involving RANKL and alkaline phosphatase (ALP), which reflect bone resorption and
Millions of patients each year suffer from challenging non-healing bone defects secondary to trauma or disease (e.g. cancer, osteoporosis or osteomyelitis). Tissue engineering approach to non-healing bone defects has been investigated over the past few decades in a search for a novel solution for critical size bone defects. The success of the tissue engineering approach relies on three main pillars, the right type of cells; and appropriate scaffold; and a biologically relevant biochemical/ biophysical stimuli. When it comes to cells the mesodermal origin of mesenchymal stem cells and its well demonstrated multipotentiality makes it an ideal option to be used in musculoskeletal regeneration. For the presented set of experimental assays, fully characterised (passage 3 to 5)ovine adipose-derived mesenchymal stems cells (Ad-MSC) were cultured either in growth medium (GM) consisting of Dulbecco's Modification of Eagle's Medium (DMEM) supplemented with 10% (v/v) foetal bovine serum and 1% penicillin-streptomycin as a control or in osteogenic differentiation medium (DM), consisting of GM further supplemented with L- ascorbic acid (50 μg/ml), β-glycerophosphate (10 mM) and dexamethasone (100nM). Osteogenic differentiation was assessed biochemically by quantifying alkaline phosphatase (ALP) enzyme activity and alizarin red staining after 3, 7, 14 and 21 days in culture (where 1×105 cells/well were seeded in 24 well-plate, n=6/media type/ time point). Temporal patterns in osteogenic gene expression were quantified using real-time PCR for Runx-2, osteocalcin (OC), osteonectin (ON) and type 1 collagen (Col 1) at days 7, 15 and 21 (where 1×105 cells were seeded in T25 cell culture flasks for RNA extraction, n= 4 / gene/ media type/time point). The morphology of osteogenic cells was additionally evaluated by scanning electron microscopy (SEM) of cells seeded at low-density (1×102 cells) on glass coverslips for 2 weeks in GM or DM. The level of ALP activity of cells grown in osteogenic DM was significantly higher than the control growing in the standard growth medium (p ≤ 0.05) at days 3, 7 and 14. At 21 days there was a sharp drop in ALP values in the differentiating cells.
Summary. Macroscopic grading, histologic grading, morphometry, mineral analysis, and mechanical testing were performed to better understand the changes that occur in the cartilage, calcified cartilage, and subchondral bone in early osteoarthritis. Introduction. The earliest changes in osteoarthritis (OA) remain poorly understood due to the difficulty in detecting OA before patients feel pain. We have published details of the mature bovine patella model showing the pre-OA state where no gross macroscopic changes are visible yet microstructural changes indicate very early degeneration. In this new study, we proceed to investigate this model further by more comprehensively quantifying the changes in articular cartilage (AC), zone of calcified cartilage (ZCC), and subchondral bone (SB) in pre and early OA. Methods. Patellae from mature cow were studied. Gross examination with India ink was used to classify macroscopic cartilage degeneration. Two groups were selected in this study: one with no visible surface degeneration (pre-OA) and the other with mild to moderate macroscopically visible surface degeneration (early OA). Histologic staining with Safranin O and Fast Green was analysed with two osteoarthritic scoring systems: Mankin and OOCHAS. Differential Interference Contrast (DIC) microscopy was used to quantify morphometric changes. Degree of
Phosphate metabolism is central to the bone formation pathway. Phosphate is shuttled through the cell membrane to the mitochondria, where it is polymerised to form adenosine triphosphate. Once exocytosed the ATP may then be cleaved to form pyro and orthophosphates, the balance of which can determine whether
Background. Aseptic loosening of prostheses is the most common cause for failure in total joint arthroplasty. Particulate wear debris induces a non-stop inflammatory-like response resulting in the formation of a layer of fibrous periprosthetic tissue at the bone/implant interface. The current treatment is an invasive revision joint replacement surgery. However, this procedure has a high morbidity rate, therefore, a less invasive alternative is necessary. One approach could be to re-establish osseointegration of the joint prosthesis by inducing osteoblast differentiation in the periprosthetic tissue. Therefore, the aim of this study was to investigate the capacity of periprosthetic tissue cells to differentiate into the osteoblast lineage. Methods. Periprosthetic tissue samples were collected during revision surgery of aseptic loosened hip prostheses, after which cells were isolated by collagenase digestion. Of 14 different donors, cells from passage 1 till 3 were used for differentiation experiments. During 21 days, cells were cultured under normal and several osteogenic culture conditions. Cultures were stained for alkaline phosphatase (ALP) activity and mineral deposits in the extracellular matrix. Results. When cells were cultured in osteogenic medium, ALP staining was increased compared to normal culture medium in 12 donors.