Advertisement for orthosearch.org.uk
Results 1 - 2 of 2
Results per page:
Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XVIII | Pages 40 - 40
1 May 2012
Eardley W Clasper J Midwinter M Watts S
Full Access

Crown copyright 2009. Published with the (permission of the Defence Science and Technology Laboratory on behalf of the Controller of HMSO. Introduction. The optimum strategy for the care of war wounds is yet to be established. A need exists to model complex extremity injury, allowing investigation of wound management options. Aim. To develop a model of militarily relevant extremity wounding. Study Design. Laboratory study with New Zealand White Rabbits. Methods. Phase 1. Development of injury. Following induction of general anaesthesia, a muscle belly on the flexor aspect of the forelimb of the rabbit was exposed. This was achieved by creating a fascial tunnel under the belly of flexor carpi ulnaris (FCU). Utilising a custom built drop test rig a high energy, short duration impact was delivered. To replicate casualty evacuation timelines, the animal was maintained under anaesthesia for three hours and recovered. The wound was dressed with saline soaked gauze and supportive bandaging. 48 hrs later, the animal was culled and the muscle harvested for histological analysis. Analgesia was administered once a day. Animals were checked by experienced staff at least twice a day and body temperature recorded by a subcutaneous transponder. Phase 2. Contamination of muscle injury. Sequential animals had inoculums of 1×102/100μl, 1×106/100μl and 1×108/100μl of Staphylococcus aureus administered to the muscle immediately after injury. Animals were recovered from anaesthetic and monitored as per phase 1. Delivery was evaluated by droplet spread and via injection by fine bore needle into the muscle belly. At the 48 hour point, the animals were culled, dressings removed, the muscle harvested and auxiliary lymph nodes sampled. Quantitative microbiological analysis was performed to determine colony forming unit counts (CFU) at 24 hours post-collection. Results. Phase 1. Six animals were exposed to a loading of 0.5kg. Histological analysis demonstrated a consistent injury pattern with 20% of the muscle belly becoming necrotic. Following discussion with subject matter experts this was found to be representative of the nature of injury from ballistic limb trauma and was adopted as standard. Phase 2. Twenty-two animals were exposed to the standardised injury and then inoculated at the prescribed challenge doses and delivery methods. A challenge dose of 1×106/100μl S. aureus delivered by droplet provided the greatest consistency. A group of six animals with an average challenge dose of 3.3×106/100μl yielded growth at 48hrs on average of 9.2×106 CFU. There were no adverse effects on animal welfare throughout, with body temperatures within normal limits at all times. Discussion. The use of rabbits in the investigation of musculoskeletal injury and infection is well established. No study to date however has addressed high energy complex soft tissue wounding, contamination and its optimum management. Considering the current burden of such wounds the need for this question to be answered in a research setting is transparent. This model enables a significant, reproducible, contaminated soft tissue injury to be delivered in vivo. It will allow the investigation of complex wound management options including wound coverage and fracture fixation


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XVIII | Pages 39 - 39
1 May 2012
Ramasamy A Hill AM Gibb I Masouros SD Bull AM Clasper JC
Full Access

Introduction. Civilian fractures have been extensively studied with in an attempt to develop classification systems, which guide optimal fracture management, predict outcome or facilitate communication. More recently, biomechanical analyses have been applied in order to suggest mechanism of injury after the traumatic insult, and predict injuries as a result of a mechanism of injury, with particular application to the field so forensics. However, little work has been carried out on military fractures, and the application of civilian fracture classification systems are fraught with error. Explosive injuries have been sub-divided into primary, secondary and tertiary effects. The aim of this study was to 1. determine which effects of the explosion are responsible for combat casualty extremity bone injury in 2 distinct environments; a) in the open and b) enclosed space (either in vehicle or in cover) 2. determine whether patterns of combat casualty bone injury differed between environments Invariably, this has implications for injury classification and the development of appropriate mitigation strategies. Method. All ED records, case notes, and radiographs of patients admitted to the British military hospital in Afghanistan were reviewed over a 6 month period Apr 08-Sept 08 to identify any fracture caused by an explosive mechanism. Paediatric cases were excluded from the analysis. All radiographs were independently reviewed by a Radiologist, a team of Military Orthopaedic Surgeons and a team of academic Biomechanists, in order to determine the fracture classification and predict the mechanism of injury. Early in the study it became clear that due to the complexity of some of the injuries it was inappropriate to consider bones separately and the term ‘Zone of Insult’ (ZoI) was developed to identify separate areas of injury. Results. 62 combat casualties with 115 ZoIs (mean 1.82 zones) were identified in this study. 34 casualties in the open sustained 56 ZoIs (mean 1.65); 28 casualties in the enclosed group sustained 59 ZoIs (mean 2.10). There was no statistical difference in the mean ZoIs per casualty in the open vs enclosed group (Student t-test, p=0.24). Open fractures were more prevalent in the open group compared to the enclosed group (48/59 vs 20/49, Chi-squared test p<0.001). Of the casualties in the open, 1 zone of injury was due to the primary effects of blast, 10 a combination of primary and secondary blast zones, 23 due to secondary effects and 24 from the tertiary effects of blast. In contrast, there were no primary or combined primary and secondary blast zones and only 2 secondary blast zones in the enclosed group. Tertiary blast effects predominated in the enclosed group, accounting for 96% of injury zones (57/59). Analysis of the pattern of injury revealed that there were a higher proportion of lower limb injuries in the Enclosed group (54/59) compared to the Open group (40/58, Chi-squared p<0.05). In the Open group the mechanism of lower limb injury was more evenly distributed amongst mixed primary and secondary blast effects (10), secondary (10) and tertiary (20). In the enclosed group, lower limb injuries were almost exclusively caused by tertiary blast effects (47/48). A similar pattern was also seen in the Upper limb with 4/5 in the enclosed group was injured by tertiary effects compared to 4/18 in the Open Group. In the open group fragmentation injury was the predominant cause of injury (13/18). Conclusions. This data clearly demonstrates two distinct injury groups based upon the casualties' environment. The enclosed environment afforded by buildings and vehicles appears to mitigate the primary and secondary effects of the explosion. However, tertiary blast effects were the predominant mechanism of injury, with severe axial loading to the lower extremity being a characteristic of the fractures seen. In contrast, secondary fragments from the explosion were more likely to result in fractures of casualties caught in the open. The development of future mitigation strategies must be focused on reducing all the different mechanisms of injury caused by an explosion. This will require a better understanding on the effects of bone in high strain environments. This method of forensic biomechanics involving clinicians and engineers, combined with accurate physical and numerical simulations can form the basis in reducing the injury burden to the combat soldier