Advertisement for orthosearch.org.uk
Results 1 - 8 of 8
Results per page:
Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 7 - 7
2 Jan 2024
Raes L Peiffer M Kvarda P Leenders T Audenaert EA Burssens A
Full Access

A medializing calcaneal osteotomy (MCO) is one of the key inframalleolar osteotomies to correct progressive collapsing foot deformity (PCFD). While many studies were able to determine the hind- and midfoot alignment after PCFD correction, the subtalar joint remained obscured by superposition on plain radiography. Therefore, we aimed to perform a 3D measurement assessment of the hind- and subtalar joint alignment pre- compared to post-operatively using weightbearing CT (WBCT) imaging. Fifteen patients with a mean age of 44,3 years (range 17-65yrs) were retrospectively analyzed in a pre-post study design. Inclusion criteria consisted of PCFD deformity correct by MCO and imaged by WBCT. Exclusion criteria were patients who had concomitant midfoot fusions or hindfoot coalitions. Image data were used to generate 3D models and compute the hindfoot - and talocalcaneal angle as well as distance maps. Pre-operative radiographic parameters of the hindfoot and subtalar joint alignment improved significantly relative to the post-operative position (HA, MA. Sa. , and MA. Co. ). The post-operative talus showed significant inversion, abduction, and dorsiflexion of the talus (2.79° ±1.72, 1.32° ±1.98, 2.11°±1.47) compared to the pre-operative position. The talus shifted significantly different from 0 in the posterior and superior direction (0.62mm ±0.52 and 0.35mm ±0.32). The distance between the talus and calcaneum at the sinus tarsi increased significantly (0.64mm ±0.44). This study found pre-dominantly changes in the sagittal, axial and coronal plane alignment of the subtalar joint, which corresponded to a decompression of the sinus tarsi. These findings demonstrate the amount of alternation in the subtalar joint alignment that can be expected after MCO. However, further studies are needed to determine at what stage a calcaneal lengthening osteotomy or corrective arthrodesis is indicated to obtain a higher degree of subtalar joint alignment correction


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 103 - 103
1 Mar 2021
Kohli S Srikantharajah D Bajaj S
Full Access

Lisfranc injuries are uncommon and can be challenging to manage. There is considerable variation in opinion regarding the mode of operative treatment of these injuries, with some studies preferring primary arthrodesis over traditional open reduction and internal fixation (ORIF). We aim to assess the clinical and radiological outcomes of the patients treated with ORIF in our unit. This is a retrospective study, in which all 27 consecutive patients treated with ORIF between June 2013 and October 2018 by one surgeon were included with an average follow-up of 2.4 years. All patients underwent ORIF with joint-sparing surgery by a dorsal bridging plate (DBP) for the second and third tarsometatarsal (TMT) joint, and the first TMT joint was fixed with trans-articular screws. Patients had clinical examination and radiological assessment, and completed American Orthopaedic Foot and Ankle Society (AOFAS) midfoot score and Foot Function Index (FFI) questionnaires. Our early results of 22 patients (5 lost to follow-up) showed that 16 (72%) patients were pain free, walking normally without aids, and wearing normal shoes and 68% were able to run or play sports. The mean AOFAS midfoot score was 78.1 (63–100) and the average FFI was 19.5 (0.6–34). Radiological assessment confirmed that only three patients had progression to posttraumatic arthritis at the TMT joints though only one of these was clinically symptomatic. Good clinical and radiological outcomes can be achieved by ORIF in Lisfranc injuries with joint-sparing surgery using DBP


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 68 - 68
2 Jan 2024
Li J
Full Access

Applications of weightbearing computed tomography (WBCT) imaging in the foot and ankle have emerged over the past decade. However, the potential diagnostic benefits are scattered across the literature, and a concise overview is currently lacking. Therefore, we aimed to systematically review all reported diagnostic applications per anatomical region in the foot and ankle. A systematic literature search was performed in the electronic databases PubMed, EMBASE, Cochrane Library, and Web of Science. Search terms consisted of “weightbearing/standing CT and ankle, hind-, mid- or forefoot”. English language studies analyzing the diagnostic applications of WBCT were included. Studies were excluded if they simulated weightbearing CT, described normal subjects, included cadaveric samples or samples were case reports. The modified Methodological Index for Non-Randomized Studies (MINORS) was applied for quality assessment. The added value was defined as the review was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines and registered in the Prospero database (CRD42019106980). A total of 48 studies (prospective N=8, retrospective N=36, cohort study N=1, diagnostic N=2, prognostic comparative study N=1) were found to be eligible for review. The following diagnostic applications were identified per anatomical area in the foot: ankle (osteoarthritis N=5, ligament injury N=6); hindfoot (deformity N=9); midfoot (Lisfranc injury N=2, flatfoot deformity N=13, osteoarthritis N=1); forefoot (hallux valgus N=12). The identified studies contained diagnostic applications that could not be used on plain radiographs. The mean MINORS equaled 10.1 on a total of 16 (range: 8 to 12). Diagnostic applications of weightbearing CT imaging are most frequently studied in hindfoot deformity, but other area's areas are on the rise. Post-processing of images was identified as the main added value compared to WBRX. However, the findings should be interpreted with caution as the average quality score was moderate. Therefore, future prospective studies are warranted to consolidate the role of WBCT in diagnostic and therapeutic algorithms


The ankle radiograph is a commonly requested investigation as the ankle joint is commonly injured. Each radiograph exposes 0.01 mSv of radiation to the patient that is equivalent to 1.5 days of natural background radiation [1]. The aim of the clinical audit was to use the Ottawa Ankle Rule to attempt to reduce the number of ankle radiographs taken in patients with acute ankle injuries and hence reduce the dose of ionising radiation the patient receives. A retrospective audit was undertaken. 123 ankle radiograph requests and radiographs taken between May and July 2018 were evaluated. Each ankle radiograph request including patient history and clinical examination was graded against the Ottawa Ankle Rule. The rule states that 1 point(s) indicates radiograph series; (1) malleolar and/or midfoot pain; (1) tenderness over the posterior 6cm or tip of the lateral or medial malleolus (ankle); (1) tenderness over the navicular or the base of the fifth metatarsal (foot); (1) unable to take four steps both immediately and in the emergency department [2]. Patients who score 0 do not need radiograph series. Each radiograph was reviewed if a fracture was present or not. The clinical audit identified 14 true positives where the Ottawa Ankle Rule scored 1 and the patient had an ankle fracture, and 2 false negatives (sensitivity 88%). There were 81 false positives, and 23 true negatives (specificity 22%). Therefore, a total of 23/123 ankle radiographs were unnecessary which is equivalent to 34.5 days of background radiation. The negative predictive value of the Ottawa Ankle Rule in this audit was 92%. The low rate of Ottawa rule utilisation may unnecessarily cause patient harm that should be addressed. An educational intervention with physicians combined with integration of the Ottawa rule scoring in ankle radiograph requests is planned with re-audit in 6 months


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 8 | Pages 1114 - 1118
1 Aug 2008
Ling ZX Kumar VP

Compartment syndrome of the foot requires urgent surgical treatment. Currently, there is still no agreement on the number and location of the myofascial compartments of the foot. The aim of this cadaver study was to provide an anatomical basis for surgical decompression in the event of compartment syndrome. We found that there were three tough vertical fascial septae that extended from the hindfoot to the midfoot on the plantar aspect of the foot. These septae separated the posterior half of the foot into three compartments. The medial compartment containing the abductor hallucis was surrounded medially by skin and subcutaneous fat and laterally by the medial septum. The intermediate compartment, containing the flexor digitorum brevis and the quadratus plantae more deeply, was surrounded by the medial septum medially, the intermediate septum laterally and the main plantar aponeurosis on its plantar aspect. The lateral compartment containing the abductor digiti minimi was surrounded medially by the intermediate septum, laterally by the lateral septum and on its plantar aspect by the lateral band of the main plantar aponeurosis. No distinct myofascial compartments exist in the forefoot. Based on our findings, in theory, fasciotomy of the hindfoot compartments through a modified medial incision would be sufficient to decompress the foot


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_2 | Pages 19 - 19
1 Jan 2017
Caravaggi P Avallone G Giangrande A Garibizzo G Leardini A
Full Access

In podiatric medicine, diagnosis of foot disorders is often merely based on tests of foot function in static conditions or on visual assessment of the patient's gait. There is a lack of tools for the analysis of foot type and for diagnosis of foot ailments. In fact, static footprints obtained via carbon paper imprint material have traditionally been used to determine the foot type or highlight foot regions presenting excessive plantar pressure, and the data currently available to podiatrists and orthotists on foot function during dynamic activities, such as walking or running, are scarce. The device presented in this paper aims to improve current foot diagnosis by providing an objective evaluation of foot function based on pedobarographic parameters recorded during walking. 23 healthy subjects (16 female, 7 males; age 35 ± 15 years; weight 65.3 ± 12.7; height 165 ± 7 cm) with different foot types volunteered in the study. Subjects' feet were visually inspected with a podoscope to assess the foot type. A tool, comprised of a 2304-sensor pressure plate (P-walk, BTS, Italy) and an ad-hoc software written in Matlab (The Mathworks, US), was used to estimate plantar foot morphology and functional parameters from plantar pressure data. Foot dimensions and arch-index, i.e. the ratio between midfoot and whole footprint area, were assessed against measurements obtained with a custom measurement rig and a laser-based foot scanner (iQube, Delcam, UK). The subjects were asked to walk along a 6m walkway instrumented with the pressure plate. In order to assess the tool capability to discriminate between the most typical walking patterns, each subject was asked to walk with the foot in forcibly pronated and supinated postures. Additionally, the pressure plate orientation was set to +15°, +30°, −15° and −30° with respect to the walkway main direction to assess the accuracy in measuring the foot progression angle (i.e. the angle between the foot axis and the direction of walk). At least 5 walking trials were recorded for each foot in each plate configuration and foot posture. The device allowed to estimate foot length with a maximum error of 5% and foot breadth with an error of 1%. As expected, the arch-index estimated by the device was the lowest in the cavus-feet group (0.12 ± 0.04) and the highest in the flat-feet group (0.29 ± 0.03). These values were between 4 – 10 % lower than the same measurements obtained with the foot scanner. The centre of pressure excursion index [1] was the lowest in the forcibly-pronated foot and the largest in the supinated foot. While the pressure plate used here has some limitations in terms of spatial resolution and sensor technology [2], the tool appears capable to provide information on foot morphology and foot function with satisfying accuracy. Patient's instrumental examination takes only few minutes and the data can be used by podiatrists to improve the diagnosis of foot ailments, and by orthotists to design or recommend the best orthotics to treat the foot condition


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 60 - 60
1 Jan 2017
Penny J Speedsberg M Kallemose T Bencke J
Full Access

Increase in heel height increases peak pressure under the forefoot. Customized shoe inlays with metatarsal lift, arch support has demonstrated lowered forefoot pressure and increase in the subjective comfort. A commercial shoe brand (Roccamore) has introduced an off-the-rack stiletto with a slim (1 cm. 2. ) 8 cm heel plus 2 cm platform with metatarsal lift, arch support and heel cap claiming it will reduce the discomfort associated with high heels. The primary aim of this study was to compare the pressure under the forefoot, arch, heel and toes in this “orthopaedic” stiletto (OS) to a standard stiletto of the same heel height without inlays (SS) and a control sneaker (SN). Secondary aims were to measure the comfort under the forefoot, heel and arch during everyday use. Finally to investigate if any pressure measurements were correlated to comfort or any anatomical/clinical feature of the foot. 22 women, aged 40 (21–62), accustomed to stilettos, walked at 4 km/hr on a level treadmill in all three shoe types. Peak pressure (kPa) and pressure-time integral (kPa/sec) under 2+3rd and first metatarsal heads, the arch/midfoot and heel were measured during 10 consecutive steps at 50 Hz using Novel Pedar-X pressure distribution insoles. Standing X-rays and a standardized clinical examination were carried out. Mundermanns comfort VAS and daily steps were recorded for each shoe type during 3 full days. (0= worst to 150 mm= most comfortable). Data were compared with paired t-tests and regression analysis. Statistical significance is reported as p<0.05=, p<0.01=, p<0.001=. Peak pressure: Compared to SS the peak pressure under the 2+3 metatarsals was reduced to 82% in the OS and 60% in the SN. Under the first metatarsal it was reduced to 73% and 40%, respectively. Under the arch it was similar for SN and OS and 30% lower for the SS. Under the heel the OS was 27–28% lower than SS and SN. The same reductions, as well as similarities in the arch were seen in the pressure-time integrals, although with smaller difference between OS and SS, and conversely larger reductions in the SN to 49% under 2+3 metatarsals and 43% under the first. For forefoot, arch and heel, the comfort was rated highest for the SN and lowest for the SS. No statistical difference between OS and SS in the arch. For each mm the second metatarsal was longer than the first, the peak pressure under MT2+3 rose 13 kPa (95%CI: 7 to 19) and the pressure time integral 3 kPa/s (1–5). No effect of first ray ROM or stability. The forefoot VAS score dropped (less comfortable) 0.3 mm for each kPa/s the pressure time integral rose under the MT2+3. Peak pressure parameters or daily steps were not statistically significantly related to the forefoot comfort. A mass produced “orthopaedic” stiletto can reduce the pressure approaching those achieved in a sneaker and increase comfort for the user. An increase in pressure-time integral under 2+3 metatarsals increases the discomfort and the pressure is increased in index-minus feet


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 72 - 72
1 Jul 2014
Trieb K Pass G Hofstaetter S
Full Access

Summary Statement. Treatment of non-union is a highly demanding field with respect to bone healing. BMP 7 is a useful, wide-ranged tool in treating non-union of the foot and benign bone tumors. It represents a low-risk procedure with a high level of reliability. Introduction. Treatment of non-union is a highly demanding field with respect to bone healing. Treatment of tibial fracture non-union with the bone morphogenetic protein 7 (BMP-7) has been successfully reported. BMP 7 is a recombinant human protein produced in ovary cells of the Chinese hamster. It is responsible for the differentiation of mesenchymal stem cells from the periost, muscle and sponious bone and stimulates bone formation. It is the aim of our study to investigate the use of BMP 7 for other locations than the tibia, such as the foot and benign bone tumors. We strive for union or revision in each medical case. Patients & Methods. At our clinic we applied BMP-7 to 13 patients (9 patients with non-union, 4 patients with benign bone cysts). 9 patients with non-union of the foot (4 forefoot, 1 midfoot, 3 hindfoot, 1 tibia) were surgically treated by resection, stabilisation, and application of BMP 7. The study included 5 men and 4 women at an average age of 58,4 years (range 33 – 80), 13 previous surgeries had been carried out. The period of follow up was on average 16.3 months (5 – 40 months). The indication for using BMP-7 instead of autologous bone graft was poor local blood supply, poor local soft tissue because of previous interventions and risk factors like smoking and diabetes. Following an indicated open biopsy, the 4 cases of benign bone tumors (1 juvenile bone cyst of the talus, 1 osteofibrose dysplasia of the proximal tibia and 2 juvenile bone cysts of the proximal humerus) were all treated with resection, followed by an application of BMP-7 and external or internal fixation. In addition two received bone grafting and two received cortisone. The average age of the tumor group was 16,75 years (11–24 years, 2 male, 2 female). Results. At follow-up all patients were satisfied with respect to pain and function, no operative complications had occurred and bone fusion had finished in 7 patients after 3 months. One ankle joint had a fibrous fusion but was free of pain. One arthrodesis of the first metatarsophalangeal joint was turned into a resection arthroplasty, today the patient is free of pain and uses a normal shoe. Both bone cysts have the radiological evidence of rehabilitation. At one humeruscyst we removed the TENS-nails without complications. We had no complications like heterotopic ossification, local erythema or pressure sensitivity. Discussion/Conclusion. These results show that BMP 7 is a useful, wide-ranged tool in treating non-union of the foot and benign bone tumors. It represents a low-risk procedure with a high level of reliability