Advertisement for orthosearch.org.uk
Results 1 - 8 of 8
Results per page:
Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 74 - 74
2 Jan 2024
Peniche Silva C Dominguez R Bakht S Pardo A Joris V Gonçalves A Texeira S Balmayor E Gomes M van Griensven M
Full Access

Tendons and tendon-to-bone entheses don't usually regenerate after injury, and the hierarchical organization of such tissues makes them challenging sites of study for tissue engineers. In this study, we have tried a novel approach using miRNA and a bioactive bioink to stimulate the regeneration of the enthesis. microRNAs (miRNAs) are short, non-coding sequences of RNA that act as post-transcriptional regulators of gene and protein expression [1]. Mimics or inhibitors of specific miRNAs can be used to restore lost functions at the cell level or improve healing at the tissue level [2,3]. We characterized the healing of a rat patellar enthesis and found that miRNA-16-5p was upregulated in the fibrotic portion of the injured tissue 10 days after the injury. Based on the reported interactions of miRNA-16-5p with the TGF-β pathway via targeting of SMAD3, we aimed to explore the effects of miRNA-16-5p mimics on the tenogenic differentiation of adipose-derived stem cells (ASCs) encapsulated in a bioactive bioink [4,5]. Bioinks with different properties are used for the 3D printing of biomimetic constructs. By integrating cells, materials, and bioactive molecules it is possible to tailor the regenerative capacity of the ink to meet the particular requirements of the tissue to engineer [5]. Here we have encapsulated ASCs in a gelatin-methacryloyl (GelMa) bioink that incorporates miR-16-5p mimics and magnetically responsive microfibers (MRFs). When the bioink is crosslinked in the presence of a magnetic field, the MRFs align unidirectionally to create an anisotropic construct with the ability to promote the tenogenic differentiation of the encapsulated ASCs. Additionally, the obtained GelMA hydrogels retained the encapsulated miRNA probes, which permitted the effective 3D transfection of the ASC and therefore, the regulation of gene expression, allowing to investigate the effects of the miR-16-5p mimics on the tenogenic differentiation of the ASCs in a biomimetic scenario


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 147 - 147
11 Apr 2023
Baker M Clinton M Lee S Castanheira C Peffers M Taylor S
Full Access

Osteoarthritis (OA) of the equine distal interphalangeal joint (DIPJ) is a common cause of lameness. MicroRNAs (miRNAs) from biofluids such as plasma and synovial fluid make promising biomarker and therapeutic candidates. The objectives of this study are (1) Identify differentially expressed (DE) miRNAs in mild and severe equine DIPJ OA synovial fluid samples and (2) Determine the effects of DE miRNAs on equine chondrocytes in monolayer culture. Synovial fluid samples from five horses with mild and twelve horses with severe DIPJ OA were submitted for RNA-sequencing; OA diagnosis was made from MRI T2 mapping, macroscopic and histological evaluation. Transfection of equine chondrocytes (n=3) was performed using the Lipofectamine® RNAiMAX system with a negative control and a miR-92a mimic and inhibitor. qPCR was used to quantify target mRNA genes. RNA-seq showed two miRNAs (miR-16 and miR-92a) were significantly DE (p<0.05). Ingenuity Pathway Analysis (IPA) identified important downstream targets of miR-92a involved in the pathogenesis of osteoarthritis and so this miRNA was used to transfect equine chondrocytes from three donor horses diagnosed with OA. Transfection was successfully demonstrated by a 1000-20000 fold increase in miR-92a expression in the equine chondrocytes. There was a significant (p<0.05) increase in COMP, COL3A1 and Sox9 in the miR-92a mimic treatment and there was no difference in ADAMTS-5 expression between the miR-92 mimic and inhibitor treatment. RNA-seq demonstrated miR-92a was downregulated in severe OA synovial fluid samples which has not previously been reported in horses, however miR-92a is known to play a role in the pathogenesis of OA in other species. Over expression of miR-92a in equine chondrocytes led to significantly increased COMP and Sox9 expression, consistent with a chondrogenic phenotype which has been identified in human and murine chondrocytes


Bone & Joint Research
Vol. 5, Issue 10 | Pages 523 - 530
1 Oct 2016
Yuan Y Zhang GQ Chai W Ni M Xu C Chen JY

Objectives. Osteoarthritis (OA) is characterised by articular cartilage degradation. MicroRNAs (miRNAs) have been identified in the development of OA. The purpose of our study was to explore the functional role and underlying mechanism of miR-138-5p in interleukin-1 beta (IL-1β)-induced extracellular matrix (ECM) degradation of OA cartilage. Materials and Methods. Human articular cartilage was obtained from patients with and without OA, and chondrocytes were isolated and stimulated by IL-1β. The expression levels of miR-138-5p in cartilage and chondrocytes were both determined. After transfection with miR-138-5p mimics, allele-specific oligonucleotide (ASO)-miR-138-5p, or their negative controls, the messenger RNA (mRNA) levels of aggrecan (ACAN), collagen type II and alpha 1 (COL2A1), the protein levels of glycosaminoglycans (GAGs), and both the mRNA and protein levels of matrix metalloproteinase (MMP)-13 were evaluated. Luciferase reporter assay, quantitative real-time polymerase chain reaction (qRT-PCR), and Western blot were performed to explore whether Forkhead Box C1 (FOCX1) was a target of miR-138-5p. Further, we co-transfected OA chondrocytes with miR-138-5p mimics and pcDNA3.1 (+)-FOXC1 and then stimulated with IL-1β to determine whether miR-138-5p-mediated IL-1β-induced cartilage matrix degradation resulted from targeting FOXC1. Results. MiR-138-5p was significantly increased in OA cartilage and in chondrocytes in response to IL-1β-stimulation. Overexpression of miR-138-5p significantly increased the IL-1β-induced downregulation of COL2A1, ACAN, and GAGs, and increased the IL-1β-induced over expression of MMP-13.We found that FOXC1 is directly regulated by miR-138-5p. Additionally, co-transfection with miR-138-5p mimics and pcDNA3.1 (+)-FOXC1 resulted in higher levels of COL2A1, ACAN, and GAGs, but lower levels of MMP-13. Conclusion. miR-138-5p promotes IL-1β-induced cartilage degradation in human chondrocytes, possibly by targeting FOXC1. Cite this article: Y. Yuan, G. Q. Zhang, W. Chai,M. Ni, C. Xu, J. Y. Chen. Silencing of microRNA-138-5p promotes IL-1β-induced cartilage degradation in human chondrocytes by targeting FOXC1: miR-138 promotes cartilage degradation. Bone Joint Res 2016;5:523–530. DOI: 10.1302/2046-3758.510.BJR-2016-0074.R2


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 60 - 60
1 Nov 2021
Cazzanelli P Hausmann ON Wuertz-Kozak K
Full Access

Introduction and Objective. Intervertebral disc (IVD) degeneration is one of the major contributors to low back pain, the leading cause of disability worldwide. This multifactorial pathological process involves the degradation of the extracellular matrix, inflammation, and cell loss due to apoptosis and senescence. While the deterioration of the extracellular matrix and cell loss lead to structural collapse of the IVD, increased levels of inflammation result in innervation and the development of pain. Amongst the known regulators of inflammation, toll-like receptors (TLRs) and more specifically TLR-2 have been shown to be specifically relevant in IVD degeneration. As strong post-transcriptional regulators, microRNAs (miRNAs) and their dysregulation has been connected to multiple pathologies, including degenerative diseases such as osteoarthritis and IVD degeneration. However, the role of miRNAs in TLR signalling in the IVD is still poorly understood and was hence investigated in this study. Materials and Methods. Human Nucleus pulposus (hNP) and Annulus fibrosus (hAF) cells (n=5) were treated with the TLR-2/6 specific agonist PAM2CSK4 (100 ng/mL for 6 hours) in order to activate the TLR2 signalling pathway. After the activation both miRNA and mRNA were isolated, followed by next-generation sequencing and qPCR analysis of proinflammatory cytokines respectively. Furthermore, cell supernatants were used to analyze the secretion of proinflammatory cytokines with enzyme-linked immunosorbent assay. TLR-2 knockdown (siRNA) cells were used as a control. Statistical analysis was conducted by performing Kolmogorov-Smirnov test and a two-tailed Student's t-test using GraphPad Prism version 9.0.2 for Windows (GraphPad Software, La Jolla California USA). Results. TLR-2 activation resulted in the induction of an inflammatory cell response, with a significant increase in gene expression of interleukin (IL)-6 (525 ± 180 fold change, p < 0.05) and IL-8 (7513 ± 1907 fold change, p < 0.05) and protein secretion of IL-6 (30.5 ± 8.1 pg/mL) and IL-8 (28.9 ± 5.4 pg/mL). TLR-2 activation was furthermore associated with changes in the miRNA profile of hNP and hAF cells. Specifically, we identified 10 differentially expressed miRNAs in response to TLR-2 activation, amongst which were miR-335–3p (1.45 log2 FC, p < 0.05), miR-125b-1–3p (0.55 log2 FC, p < 0.05), and miR-181a-3p (−1.05 log2 FC, p < 0.05). Conclusions. The identified miRNAs are known to be associated with osteoarthritis (miR-335-3p), inflammation and IVD degeneration (mir-125-1-3p and miR-181a-3p), but the link to TLR signalling has not been previously reported. Experiments to validate the identified miRNAs and elucidate their functional role are undergoing. The identification of these miRNAs provides an opportunity to further investigate miRNAs in the context of TLR activation and inflammation and to enhance our understanding of underlying molecular mechanisms behind disc degeneration, inflammation, and TLR dysregulation


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 43 - 43
1 Jul 2014
Li R Patel H Perriman D Wang J Smith P
Full Access

Summary Statement. Using the latest Next Generation Sequencing technologies, we have investigated miRNA expression profiles in human trabecular bone from total hip replacement (THR) revision surgery where wear particle associated osteolysis was evident. Introduction. A major problem in orthopaedic surgery is aseptic loosening of prosthetic implants caused by wear particle associated osteolysis. Wear debris is known to impact on a variety of cellular responses and genes in multiple pathways associated with the development of the periprosthetic osteolysis. MicroRNAs (miRNAs) act as negative regulators of gene expression and the importance of miRNAs in joint pathologies has only recently been addressed. However, miRNA profiles in osteolytic bone are largely unknown. Using the latest Next Generation Sequencing technologies, we have investigated miRNA expression profiles in human trabecular bone sourced from bone discarded during total hip replacement (THR) revision surgery where wear particle associated osteolysis was evident. Patients and Methods. Three groups of gender and age-matched patients (n=9 per group) were recruited for this study including patients undergoing revision surgery, primary THR patients and healthy subjects. Total RNAs were prepared from trabecular bone specimens. The cDNA libraries were constructed using a TruSeq Small RNA Sample Preparation kit, and then sequenced on an Illumina HiSeq2000 sequencer. All good quality tags were aligned against the reference sequences containing human chromosomal sequences and 18s and 28s rRNA sequences were analysed using Bowtie software. We used miRBase v19 to identify the start positions of all mature miRNA and the edgeR package to analyse differential expression. Osteogenesis pathway-related gene expression was also investigated using RT-qPCR Array assay. Results. We observed a significant difference in expressed miRNAs between revision and primary THR groups, including upexpressed miR127, miR-409, miR-211 and miR-146a. Importantly, the miR-127 (3.1 fold, p=0.005) and miR-146a (3.5 fold, p=0.001) were not only upexpressed in the revision group vs primary group, but also upexpressed in the revision group vs the healthy group. Thus, miR-127 and miR-146a may have potential as both biomarkers to predict osteolysis and as therapeutic targets. The miR-127 and miR-146a are critical in bone diseases because some of their target genes play an important role in osteogenesis. We have thus studied osteogenic genes and confirmed that SMAD4, RUNX2, FGFR1, TGFβ1, COL1A1 and WNT4 were downregulated. Our data also revealed that miR-93 and miR-204a were downexpressed (−3.7 fold, p=0.023; −2.5, p=0.003 respectively) and t IL-6 and IL-6R, which had been reported as miR-204 target genes, were upexpressed. Discussion and Conclusion. Our results showed that upexpressed miR-127, miR-146a, miR-204a and miR-93 in trabecular bone from revision THR may be the key negative regulators in either osteogenic genes involved in osteogenic differentiation of bone formation or inflammatory genes involved in osteoclastogenesis. Aberrant miRNA expressions identified in the revision THR group may also suggest the existence of genetic risk factors favouring the development of osteolysis in certain specific subgroups of patients. An in-depth understanding of the roles of these regulatory miRNAs in the skeleton warrants further investigation


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 207 - 207
1 Jul 2014
He B Liu J Tang T Guo B Pan X Lu A Zhang G
Full Access

Summary. We compare the difference in expression profiles of miRNAs during fracture healing between adult and aged female mice. This study reveals the possibility to improve impaired fracture healing in aged females by regulating key miRNAs at early stage. Introduction. Impaired fracture healing in aged female skeleton is still a clinical challenge (Holroyd et al., Best Pract Res Clin Endocrinol Metab, 2008, Virk, Lieberman, Arthritis Res Ther, 2012). Angiogenesis and osteogenesis are the two key stages during fracture healing, which are impaired in aged female (Naik et al., J Bone Miner Res, 2009). MicroRNAs (miRNAs) are key post-transcriptional non-coding regulators of gene expression, which has demonstrated important roles in angiogenesis and osteogenesis (Bae et al., Hum Mol Genet, 2012, Plummer et al., Cancer Res, 2013). Understanding how non-coding regulatory RNA in fracture healing changes with age will help identifying novel therapeutic targets that can be exploited to improve fracture healing in the aged females. Materials and methods. Bilateral femur transverse fractures were created in 9 female 12-month-old mice (Aged Group) and 9 female 12-week-old mice (Adult Group). Three mice in each group were sacrificed at 0, 2 and 4 weeks post fracture, respectively. Total RNA was extracted and hybridised on Agilent 8×60K Mouse miRNA Microarray. Then, differentially expressed miRNAs were identified in adult and aged female fracture mice, respectively (2-vs-0 weeks, 4-vs-0 weeks, P-value <= 0.05 & Fold change >=2.0). With the experimentally validated interactions among miRNAs and their targets, we constructed fracture-healing-related molecular network. Thereafter, we performed topological and dynamic network analysis to find key hub miRNAs in female fracture healing. Person correlation coefficient (r) analysis was performed on the expression data of the miRNAs in all the 18 mice to identify co-expression modules in the female fracture healing progress. Meanwhile, in order to analyze the angiogenesis in the early stage and osteogenesis in the later stage of female fracture healing, we performed microCT-based angiography at 2 weeks post fracture and micro-CT examination at 4 weeks post fracture on the right femur callus samples. Results & Discussion. Angiography showed smaller blood vessel volume in aged mice at early stage when compared to that in the adult mice. Reconstructed calluses showed lower bridging mineralization tissues within the gap in aged mice than that in the adult mice at the later stage. We found that the top hub miRNAs were differentially expressed in adult female mice but not in aged ones during fracture healing. Moreover, the differential expression of the top hub miRNAs was only observed at early stage (2 weeks) during fracture healing in adult female mice. This may help explain the difference of fracture healing between adult and aged female mice. It also indicated the molecular events controlled by the hub miRNAs in early stage could lead to the following differences between the adult and aged female mice at 4 weeks. The person correlation coefficient analysis revealed that there were five co-expression miRNA modules (r>0.8) participated in female fracture healing. The top hub miRNAs in fracture-healing-related molecular network were all included in the two largest modules. These results implied the possibility to improve the aged female fracture healing by regulating key miRNAs at early stage


Bone & Joint Research
Vol. 6, Issue 8 | Pages 464 - 471
1 Aug 2017
Li QS Meng FY Zhao YH Jin CL Tian J Yi XJ

Objectives

This study aimed to investigate the functional effects of microRNA (miR)-214-5p on osteoblastic cells, which might provide a potential role of miR-214-5p in bone fracture healing.

Methods

Blood samples were obtained from patients with hand fracture or intra-articular calcaneal fracture and from healthy controls (HCs). Expression of miR-214-5p was monitored by qRT-PCR at day 7, 14 and 21 post-surgery. Mouse osteoblastic MC3T3-E1 cells were transfected with antisense oligonucleotides (ASO)-miR-214-5p, collagen type IV alpha 1 (COL4A1) vector or their controls; thereafter, cell viability, apoptotic rate, and the expression of collagen type I alpha 1 (COL1A1), type II collagen (COL-II), and type X collagen (COL-X) were determined. Luciferase reporter assay, qRT-PCR, and Western blot were performed to ascertain whether COL4A1 was a target of miR-214-5p.


Bone & Joint Research
Vol. 6, Issue 4 | Pages 196 - 203
1 Apr 2017
Jin Y Chen X Gao ZY Liu K Hou Y Zheng J

Objectives

This study aimed to explore the role of miR-320a in the pathogenesis of osteoarthritis (OA).

Methods

Human cartilage cells (C28/I2) were transfected with miR-320a or antisense oligonucleotides (ASO)-miR-320a, and treated with IL-1β. Subsequently the expression of collagen type II alpha 1 (Col2α1) and aggrecan (ACAN), and the concentrations of sulfated glycosaminoglycans (sGAG) and matrix metallopeptidase 13 (MMP-13), were assessed. Luciferase reporter assay, qRT-PCR, and Western blot were performed to explore whether pre-B-cell leukemia Homeobox 3 (PBX3) was a target of miR-320a. Furthermore, cells were co-transfected with miR-320a and PBX3 expressing vector, or cells were transfected with miR-320a and treated with a nuclear factor kappa B (NF-κB) antagonist MG132. The changes in Col2α1 and ACAN expression, and in sGAG and MMP-13 concentrations, were measured again. Statistical comparisons were made between two groups by using the two-tailed paired t-test.