Advertisement for orthosearch.org.uk
Results 1 - 3 of 3
Results per page:
The Bone & Joint Journal
Vol. 105-B, Issue 3 | Pages 261 - 268
1 Mar 2023
Ruhr M Huber G Niki Y Lohner L Ondruschka B Morlock MM

Aims

The aim of the study was to investigate whether the primary stability of press-fit acetabular components can be improved by altering the impaction procedure.

Methods

Three impaction procedures were used to implant acetabular components into human cadaveric acetabula using a powered impaction device. An impaction frequency of 1 Hz until complete component seating served as reference. Overimpaction was simulated by adding ten strokes after complete component seating. High-frequency implantation was performed at 6 Hz. The lever-out moment of the acetabular components was used as measure for primary stability. Permanent bone deformation was assessed by comparison of double micro-CT (µCT) measurements before and after impaction. Acetabular component deformation and impaction forces were recorded, and the extent of bone-implant contact was determined from 3D laser scans.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_12 | Pages 32 - 32
1 Jun 2017
Di Laura A Hothi H Henckel J Liow M Kwon Y Skinner J Hart A
Full Access

Dual mobility (DM) cups are designed to improve stability, however have been associated with increased risk of impingement that can ultimately result in intraprosthetic dislocation. It is speculated that the femoral neck plays a role in their performance. We investigated the effect of neck topography on the wear of new-generation liners. This was a retrieval study involving 70 DM cups implanted with liners made of highly crosslinked polyethylene and paired with two neck types: either highly polished (n=35) or rough necks (n=35). The median time of implantation was 30 months. The rim edge of all inserts was investigated by two examiners for evidence of contact with the femoral neck, presenting as deformation of the polyethylene. A high precision roundness machine and micro-CT scans of the components were used to measure the size of the deformations observed. 28 of the 35 (80%) DM liners paired with rougher necks had evidence of neck impingement resulting in a raised lip, whilst 8 out of 35 (23%) liners paired with smooth necks had a raised lip; this difference was significant (p<0.0001). The repeatability and the inter-observer reproducibility of the deformation scores was found to be substantial κ >0.70. The height of the raised rims of the DM cups paired with rough necks had a median (range) of 139 µm (72–255), whilst had a median (range) of 52 µm (45–90) with smooth necks, the difference between the groups was significant (p<0.0001). Liner rim deformation resulting from contact with the femoral neck likely begins during early in-vivo function. Rough necks can increase the damage on the polyethylene rim in dual-mobility bearing, which may lead to loss of the retentive power of these components over time


The Bone & Joint Journal
Vol. 99-B, Issue 3 | Pages 310 - 316
1 Mar 2017
Hothi H Henckel J Shearing P Holme T Cerquiglini A Laura AD Atrey A Skinner J Hart A

Aims

The aim of this study was to compare the design of the generic OptiStem XTR femoral stem with the established Exeter femoral stem.

Materials and Methods

We obtained five boxed, as manufactured, implants of both designs at random (ten in total). Two examiners were blinded to the implant design and independently measured the mass, volume, trunnion surface topography, trunnion roughness, trunnion cone angle, Caput-Collum-Diaphyseal (CCD) angle, femoral offset, stem length, neck length, and the width and roughness of the polished stem shaft using peer-reviewed methods. We then compared the stems using these parameters.