The aim of the study was to investigate whether the primary stability of press-fit acetabular components can be improved by altering the impaction procedure. Three impaction procedures were used to implant acetabular components into human cadaveric acetabula using a powered impaction device. An impaction frequency of 1 Hz until complete component seating served as reference. Overimpaction was simulated by adding ten strokes after complete component seating. High-frequency implantation was performed at 6 Hz. The lever-out moment of the acetabular components was used as measure for primary stability. Permanent bone deformation was assessed by comparison of double micro-CT (µCT) measurements before and after impaction. Acetabular component deformation and impaction forces were recorded, and the extent of bone-implant contact was determined from 3D laser scans.Aims
Methods
Dual mobility (DM) cups are designed to improve stability, however have been associated with increased risk of impingement that can ultimately result in intraprosthetic dislocation. It is speculated that the femoral neck plays a role in their performance. We investigated the effect of neck topography on the wear of new-generation liners. This was a retrieval study involving 70 DM cups implanted with liners made of highly crosslinked polyethylene and paired with two neck types: either highly polished (n=35) or rough necks (n=35). The median time of implantation was 30 months. The rim edge of all inserts was investigated by two examiners for evidence of contact with the femoral neck, presenting as deformation of the polyethylene. A high precision roundness machine and
The aim of this study was to compare the design of the generic
OptiStem XTR femoral stem with the established Exeter femoral stem. We obtained five boxed, as manufactured, implants of both designs
at random (ten in total). Two examiners were blinded to the implant
design and independently measured the mass, volume, trunnion surface
topography, trunnion roughness, trunnion cone angle, Caput-Collum-Diaphyseal
(CCD) angle, femoral offset, stem length, neck length, and the width
and roughness of the polished stem shaft using peer-reviewed methods.
We then compared the stems using these parameters.Aims
Materials and Methods