Advertisement for orthosearch.org.uk
Results 1 - 4 of 4
Results per page:
Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXI | Pages 57 - 57
1 May 2012
K. M A. S
Full Access

Glenoid loosening is a major problem in total shoulder arthroplasty. Failure of osteointegration, osteolysis and loosening are potential problems with concerning reports of these complications with earlier metal back designs. CT scans have been reported as more accurate than plain x-rays in examining fixation of components. This study examines the medium term osteointegration of the SMR (Lima) metal back glenoid component. 20 consecutive patients operated on by the same surgeon (KM) were evaluated at a mean of 3 years 9 months (range 3-5 years) using CT analysis. Films were read by a musculoskeletal radiologist (AS). 8 zones were described and the interface graded as ‘osteointergrated’, ‘lucent zone < 1mm’, ‘lucent zone 1-2mm’, ‘lucent zone > 2mm osteolysis’. Loosening was defined as lucent line on all zones > 1mm or migration of implant. No components were loose. All components were osteointegrated around the central peg. Osteointegration was observed in 85% of zones. 4% of the zones were graded as osteolysis, all in the one patient. This patient had osteolysis 4 years post-surgery with superior subluxation of the humeral head and polyethlylene and metal wear. The glenoid component was not loose at revision surgery. Problems with this technique of assessment include radiation exposure and artefact. Small lucent zones often had a well contoured margin suggesting that the component did not seat perfectly on the bone surface in these areas. These results confirm that reliable medium term osteointegration does occur with the SMR metal back glenoid in anatomical total shoulder replacement. Osteolysis can occur and longer term follow up is ongoing


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXI | Pages 56 - 56
1 May 2012
K. M
Full Access

The glenoid is the ‘weak link’ in total shoulder arthroplasty. Concerns exist over loosening of all glenoid components. Metal back glenoid components have, in some reports, had early problems with liner dissociation, polyethylene wear, osteolysis and component fracture. In November 2003 the first metal back SMR total shoulder replacement was implanted in New Zealand (NZ). We reviewed the NZ joint registry information on anatomical total shoulder replacements over a 5-year period from the end of 2003. There were 192 metal back SMR prostheses (Lima) implanted and 484 cemented prostheses (all brands). 70% of patients in each group completed an Oxford score at 6 months. The mean score in both groups was 40.39. There was no statistically significant difference in the revision rate in this period for revisions of any kind (p=0.07). 6/192 metal back cases had a revision procedure, but none were for the glenoid component. 7/484 cemented cases had a revision procedure with 3 being for glenoid loosening. None of the metal back glenoids were revised in this period. 5 of the cemented glenoids were revised in this period. There was a higher revision rate for instability in the metal back group with 5 in the metal back group and 2 in the cemented group being revised for instability (p=0.01). In the metal back group there were 3 revisions to a reverse shoulder arthroplasty without removal of the metal back glenoid base plate. We have not identified an early cause for concern with the use of the metal back SMR prosthesis in anatomical total shoulder replacement in New Zealand. It is possible, but not proven, that the modularity of the implant may lower the revision threshold for some cases. Reassuringly, there were no revisions of the metal back glenoid in this early period


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_3 | Pages 21 - 21
23 Feb 2023
Sandow M Page R Hatton A Peng Y
Full Access

The 2021 Australian Orthopaedic Association National Joint Replacement Registry report indicated that total shoulder replacement using both mid head (TMH) length humeral components and reverse arthroplasty (RTSA) had a lower revision rate than stemmed humeral components in anatomical total shoulder arthroplasty (aTSA) - for all prosthesis types and diagnoses. The aim of this study was to assess the impact of component variables in the various primary total arthroplasty alternatives for osteoarthritis in the shoulder. Data from a large national arthroplasty registry were analysed for the period April 2004 to December 2020. The study population included all primary aTSA, RTSA, and TMH shoulder arthroplasty procedures undertaken for osteoarthritis (OA) using either cross-linked polyethylene (XLPE) or non-cross-linked polyethylene (non XLPE). Due to the previously documented and reported higher revision rate compared to other anatomical total shoulder replacement options, those using a cementless metal backed glenoid components were excluded. The rate of revision was determined by Kaplan-Meir estimates, with comparisons by Cox proportional hazard models. Reasons for revision were also assessed. For a primary diagnosis of OA, aTSA with a cemented XLPE glenoid component had the lowest revision rate with a 12-year cumulative revision rate of 4.7%, compared to aTSA with cemented non-XLPE glenoid component of 8.7%, and RTSA of 6.8%. The revision rate for TMH was lower than aTSA with cemented non-XLPE, but was similar to the other implants at the same length of follow-up. The reason for revision for cemented aTSR was most commonly component loosening, not rotator cuff deficiency. Long stem humeral components matched with XLPE in aTSA achieve a lower revision rate compared to shorter stems, long stems with conventional polyethylene, and RTSA when used to treat shoulder OA. In all these cohorts, loosening, not rotator cuff failure was the most common diagnosis for revision


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_12 | Pages 14 - 14
1 Jul 2014
McFarland E
Full Access

There is nothing going to ruin your day like a complication after shoulder arthroplasty, either hemiarthroplasty (HA) anatomical (TSA) or reverse arthroplasty (RTSA). While complications are fortunately uncommon with anatomical shoulder arthroplasty (approximately 8% but as high as 40%), the complication rate for RTSA has been reported as high as 70%. Most complications are multifactorial and cannot all be blamed on the patient. Basically you do not want to operate upon a young patient who is an insulin dependent diabetic, has an ASA of 3 or 4, who smokes, has HIV disease and has a BMI over 40. The most common predictors of failure are determined by the indication for surgery, the type of implant used and the skill of the surgeon. The major risk factors for HA are eccentric glenoids, young age and rotator cuff failure. The biggest risk factors for TSA are metal backed glenoid components, younger age of the patient, rotator cuff pathology and insufficient glenoid bone. The major risk factors for RTSA are the type of component used (Grammont type versus lateral center of rotation designs) and the indication for surgery. Infection risks include previous infected arthroplasty, previous joint infection, immunosuppression (e.g. steroid use, insulin dependent diabetes, HIV disease), ASA 3 or 4 and higher BMI (i.e. over 40). Not all of these risk factors can be prevented in patients but informed consent is critical to the patient understanding the potential outcomes of their surgery