Advertisement for orthosearch.org.uk
Results 1 - 20 of 31
Results per page:
Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 92 - 92
1 Jul 2020
Niedermair T Straub R Schirner S Seebröker R Grässel S
Full Access

Previous studies have described an age-dependent distortion of bone microarchitecture for α-CGRP-deficient mice (3). In addition, we observed changes in cell survival and activity of osteoblasts and osteoclasts isolated from young wildtype (WT) mice when stimulated with α-CGRP whereas loss of α-CGRP showed only little effects on bone cell metabolism of cells isolated from young α-CGRP-deficient mice. We assume that aging processes differently affect bone cell metabolism in the absence and presence of α-CGRP. To further explore this hypothesis, we investigated and compared cell metabolism of osteoblasts and bone marrow derived macrophages (BMM)/osteoclast cultures isolated from young (8–12 weeks) and old (9 month) α-CGRP-deficient mice and age matched WT controls. Isolation/differentiation of bone marrow macrophages (BMM, for 5 days) to osteoclasts and osteoblast-like cells (for 7/14/21 days) from young (8–12 weeks) and old (9 month) female α-CGRP−/− and WT control (both C57Bl/6J) mice according to established protocols. We analyzed cell migration of osteoblast-like cells out of femoral bone chips (crystal violet staining), proliferation (BrdU incorporation) and caspase 3/7-activity (apoptosis rate). Alkaline phosphatase (ALP) activity reflects osteoblast bone formation activity and counting of multinucleated (≥ 3 nuclei), TRAP (tartrate resistant acid phosphatase) stained osteoclasts reflects osteoclast differentiation capacity. We counted reduced numbers of BMM from young α-CGRP−/− mice after initial seeding compared to young WT controls but we found no differences between old α-CGRP−/− mice and age-matched controls. Total BMM number was higher in old compared to young animals. Migration of osteoblast-like cells out of bone chips was comparable in both, young and old α-CGRP−/− and WT mice, but number of osteoblast-like cells was lower in old compared to young animals. Proliferation of old α-CGRP−/− BMM was higher when compared to age-matched WT whereas proliferation of old α-CGRP−/− osteoblasts after 21 days of osteogenic differentiation was lower. No differences in bone cell proliferation was detected between young α-CGRP−/− and age-machted WT mice. Caspase 3/7 activity of bone cells from young as well as old α-CGRP−/− mice was comparable to age-matched controls. Number of TRAP-positive multinucleated osteoclasts from young α-CGRP−/− mice was by trend higher compared to age-matched WT whereas no difference was observed in osteoclast cultures from old α-CGRP−/− mice and old WT. ALP activity, as a marker for bone formation activity, was comparable in young WT and α-CGRP−/− osteoblasts throughout all time points whereas ALP activity was strongly reduced in old α-CGRP−/− osteoblasts after 21 days of osteogenic differentiation compared to age-matched WT. Our data indicate that loss of α-CGRP results in a reduction of bone formation rate in older individuals caused by lower proliferation and reduced activity of osteogenic cells but has no profound effects on bone resorption rate. We suggest that the osteopenic bone phenotype described in aged α-CGRP-deficient mice could be due to an increase of dysfunctional matured osteoblasts during aging resulting in impaired bone formation


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_9 | Pages 23 - 23
1 May 2016
Matsui S Majima T Mominoki K Koizumi R Kawaji H Takahashi K Takai S
Full Access

Introduction. Some patients complain ingrown pain or discomfort after implanting Co-Cr conventional endprosthesis of the hip. Some of this complaint may be attributable for effect on cartilage metabolism. It have been reported that ceramic is bioinert for biological tissue. On the other hand, metal including cobalt-chrome (Co-Cr) have some detrimental effect on biological tissue. However, there is no report concerning acetabular cartilage metabolism after hip endprosthesis implantation. In the present study, we hypothesized that ceramic head have small detrimental effect on cartilage cell metabolism. Specific aim of the study is to compare the protein level of inflammation related cytokines, amount of hyaluronic acid (HA) in culture media, and cartilage mRNA expression in organ culture model of hip end prosthesis implanted using ceramic head and Co-Cr head. Materials and Methods. Six acetabulum of 3 matured crossbred pig (average weight: 36 +/− 3.6kg) was retrieved. Animal experiment was performed under the rules of ethical committee of animal experiment. Average diameter of pig acetabulum was 26.3 +/− 0.6 mm. Just after sacrifice, mechanical loading using Instron testing machine with 26mm diameter of Co-Cr in right hip and Ceramic heads in left hip was performed in culture media. Ten thousand cycles of cyclic compression and rotation load (1.5kN to 0.15kN of compression and 12 degrees of rotation) to cartilage was applied at 1Hz (Figure 1). Culture media was analyzed for protein levels of inflammation related cytokines and amount of HA. Relative quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) from acetabular cartilage was performed as previously reported using specific primer sets for type II collagen, aggrecan, TNF-alpha, Interleukine-1 and 6, and MMP-1, 3, 13. Results. IL-1 beta protein level from culture media was significantly higher in Co-Cr than that in Ceramic (155+/−25.2 pg/ml vs. 86.3+/−9.6 pg/ml respectively). MMP-3 protein level had tendency to be higher in culture media from Co-Cr than that from Ceramic (16.3+/−10.6 ng/ml vs. 10.0+/−0.1 ng/ml respectively, p<0.05), however there was no significant difference. There were no significant differences of protein levels from culture media in MMP-1, IL-1a, and TNF between two groups. Amount of HA from culture media of Co-Cr group was significantly higher than that from Ceramic group (337+/−38.4 mg/ml versus 257+/−11.1 mg/ml respectively, p<0.05). Type II collagen mRNA expression was 3 times higher in Ceramic group than that in Co-Cr group. IL-1 beta mRNA expression was 4 times higher in Co-Cr group than that in Ceramic group. Other gene expression had no significant differences. Discussion. The present study showed that Co-Cr affects cartilage metabolism than Ceramic. Co-Cr group had higher protein level and mRNA expression of inflammation related cytokine, IL-1 beta, and higher HA. Concerning the mRNA expression from cartilage, type II collagen was significantly higher in Ceramic group. It has been reported that HA level is high in osteoarthritic joint. These report and our results showed that ceramic head have small detrimental effect on cartilage cell metabolism. There are limitations of the present study. Firstly, the sample size is small. Secondly, we did not evaluate synovial membrane metabolism


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_12 | Pages 74 - 74
1 Dec 2022
Changoor A Suderman R Wood B Grynpas M Hurtig M Kuzyk P
Full Access

Large cartilage lesions in younger patients can be treated by fresh osteochondral allograft transplantation, a surgical technique that relies on stable initial fixation and a minimum chondrocyte viability of 70% in the donor tissue to be successful. The Missouri Osteochondral Allograft Preservation System (MOPS) may extend the time when stored osteochondral tissues remain viable. This study aimed to provide an independent evaluation of MOPS storage by evaluating chondrocyte viability, chondrocyte metabolism, and the cartilage extracellular matrix using an ovine model. Femoral condyles from twelve female Arcott sheep (6 years, 70 ± 15 kg) were assigned to storage times of 0 (control), 14, 28, or 56 days. Sheep were assigned to standard of care [SOC, Lactated Ringer's solution, cefazolin (1 g/L), bacitracin (50,000 U/L), 4°C storage] or MOPS [proprietary media, 22-25°C storage]. Samples underwent weekly media changes. Chondrocyte viability was assessed using Calcein AM/Ethidium Homodimer and reported as percent live cells and viable cell density (VCD). Metabolism was evaluated with the Alamar blue assay and reported as Relative Fluorescent Units (RFU)/mg. Electromechanical properties were measured with the Arthro-BST, a device used to non-destructively compress cartilage and calculate a quantitative parameter (QP) that is inversely proportional to stiffness. Proteoglycan content was quantified using the dimethylmethylene blue assay of digested cartilage and distribution visualized by Safranin-O/Fast Green staining of histological sections. A two-way ANOVA and Tukey's post hoc were performed. Compared to controls, MOPS samples had fewer live cells (p=0.0002) and lower VCD (p=0.0004) after 56 days of storage, while SOC samples had fewer live cells (p=0.0004, 28 days; p=0.0002, 56 days) and lower VCD (p=0.0002, 28 days; p=0.0001, 56 days) after both 28 and 56 days (Table 1). At 14 days, the percentage of viable cells in SOC samples were statistically the same as controls but VCD was lower (p=0.0197). Cell metabolism in MOPS samples remained the same over the study duration but SOC had lower RFU/mg after 28 (p=0.0005) and 56 (p=0.0001) days in storage compared to controls. These data show that MOPS maintained viability up to 28 days yet metabolism was sustained for 56 days, suggesting that the conditions provided by MOPS storage allowed fewer cells to achieve the same metabolic levels as fresh cartilage. Electromechanical QP measurements revealed no differences between storage methods at any individual time point. QP data could not be used to interpret changes over time because a mix of medial and lateral condyles were used and they have intrinsically different properties. Proteoglycan content in MOPS samples remained the same over time but SOC was significantly lower after 56 days (p=0.0086) compared to controls. Safranin-O/Fast Green showed proteoglycan diminished gradually beginning at the articular surface and progressing towards bone in SOC samples, while MOPS maintained proteoglycan over the study duration (Figure 1). MOPS exhibited superior viability, metabolic activity and proteoglycan retention compared to SOC, but did not maintain viability for 56 days. Elucidating the effects of prolonged MOPS storage on cartilage properties supports efforts to increase the supply of fresh osteochondral allografts for clinical use. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_17 | Pages 21 - 21
24 Nov 2023
Hartmann KT Nielsen RL Mikkelsen F Ingmer H Kvich LA Aalbaek B Odgaard A Jensen HE Lichtenberg M Bjarnsholt T Jensen LK
Full Access

Aim. To make an inoculum for induction of Implant-Associated Osteomyelitis (IAO) in pigs based on bacterial aggregates resembling those found on the human skin, i.e. aggregates of 5–15 µm with low metabolic activity. The aggregates were evaluated and compared to a standard planktonic bacterial inoculum. Method. The porcine Staphylococcus aureus strain S54F9 was cultured in Tryptone Soya Broth for seven days. Subsequently, the culture was filtered through cell strainers with pore sizes of 15 µm and 5 µm, respectively. The fraction of 5–15 µm aggregates in the top of the 5 µm filter was collected as the aggregate-inoculum. The separation of aggregates into different size fractions was evaluated by light microscopy. The metabolism of the aggregate-inoculum and a standard overnight planktonic inoculum was evaluated with isothermal microcalorimetry. In total, six female minipigs were allocated into three groups (n=2), receiving different inoculums. Group A: overnight planktonic inoculum; 10. 4. CFU S. aureus (S54F9), Group B: seven days old 5–15 µm aggregate-inoculum; 10. 4. CFU S. aureus (S54F9), Group C: saline. All inoculums were placed in a pre-drilled implant cavity in the right tibia of the pig and a sterile stainless-steel implant was inserted. The pigs were euthanized seven days after surgery. Postmortem macroscopic pathology, microbiology, computed tomography and histopathology were performed. Results. The separation of aggregates into different size fractions was done successfully by the filtering method. Isothermal microcalorimetry showed, a delayed Time-to-peak metabolic activity of the aggregate-inoculum compared to the planktonic inoculum. S. aureus was isolated from subcutis, bone and implants from all animals in groups A and B. Both group A animals showed osteomyelitis at gross inspection with suppuration and sequestration, while groups B and C animals had no macroscopic lesions. From CT scans, both group A animals also showed positive signs of osteomyelitis, i.e., osteolysis, while only one animal in group B did, and none in group C. Histopathological examination of the bones showed more extensive inflammation in group A animals compared to those in group B, which showed more osteoid formation. Conclusions. Formation and separation of low metabolism bacterial aggregates into different size fractions was possible. The aggregates can be used as inoculum in the porcine IAO model, with microbiological re-isolation from both implants and tissue. Furthermore, the aggregates caused a less aggressive IAO, than the planktonic counterparts. Using aggregated bacteria as inoculum appears to be more relevant to the clinical situation of infecting bacteria


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_15 | Pages 5 - 5
1 Dec 2021
Alagboso F Mannala G Steinmann S Docheva D Rupp M Brochhausen C Alt V
Full Access

Aim. Bone regeneration following the treatment of Staphylococcal bone infection or osteomyelitis is challenging due to the ability of Staphylococcus aureus to invade and persist within bone cells, which could possibly lead to antimicrobial tolerance and incessant bone destruction. Here, we investigated the influence of Staphylococcal bone infection on osteoblasts metabolism and function, with the underlying goal of determining whether Staphylococcus aureus-infected osteoblasts retain their ability to produce extracellular mineralized organic matrix after antibiotic treatment. Method. Using our in vitro infection model, human osteoblasts-like Saos-2 cells were infected with high-grade Staphylococcus aureus EDCC 5055 strain, and then treated with 8 µg/ml rifampicin and osteogenic stimulators up to 21-days. Results. Immunofluorescence and transmission electron microscopic (TEM) imaging demonstrated the presence of intracellular bacteria within the infected osteoblasts as early as 2 hours post-infection. TEM micrographs revealed intact intracellular bacteria with dividing septa indicative of active replication. The infected osteoblasts showed significant amounts of intracellular bacteria colonies and alteration in metabolic activity compared to the uninfected osteoblasts (p≤0.001). Treatment of S. aureus-infected osteoblasts with a single dose of 8 µg/ml rifampicin sufficiently restored the metabolic activity comparative to the uninfected groups. Alizarin red staining and quantification of the rifampicin-treated infected osteoblasts revealed significantly lower amount of mineralized extracellular matrix after 7-days osteogenesis (p<0.05). Interestingly, prolonged osteogenic stimulation and rifampicin-treatment up to 21 days improved the extracellular matrix mineralization level comparable to the rifampicin-treated uninfected group. However, the untreated (native) osteoblasts showed significantly more quantity of mineral deposits (p≤0.001). Ultrastructural analysis of the rifampicin-treated infected osteoblasts at 21-days osteogenesis revealed active osteoblasts and newly differentiated osteocytes, with densely distributed calcium crystal deposits within the extracellular organic matrix. Moreover, residual colony of dead bacteria bodies and empty vacuoles of the fully degraded bacteria embedded within the mineralized extracellular matrix. Gene expression level of prominent bone formation markers, namely RUNX2, COL1A1, ALPL, BMP-2, SPARC, BGLAP, OPG/RANKL showed no significant difference between the infected and uninfected osteoblast at 21-days of osteogenesis. Conclusions. Staphylococcus aureus bone infection can drastically impair osteoblasts metabolism and function. However, treatment with potent intracellular penetrating antibiotics, namely rifampicin restored the metabolic and bone formation activity of surviving osteoblasts. Delay in early osteogenesis caused by the bacterial infection was significantly improved over time after successful intracellular bacteria eradication


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_3 | Pages 112 - 112
23 Feb 2023
Deng Y Zhang D Smith P Li R
Full Access

Hip and knee arthroplasty (HKA) are two of the most successful orthopaedic procedures. However, one major complication necessitating revision surgery is osteolysis causing aseptic loosening of the prosthesis. JAK-STAT has been demonstrated to influence bone metabolism and can be regulated by microRNA (miRNA). Adult patients with osteolysis or aseptic loosening undergoing revision HKA were recruited. Age and gender matched patients undergoing primary hip or knee arthroplasty were our controls. Samples of bone, tissue and blood were collected and RNA isolation was performed. The best quality samples were used for RNA-sequencing. Data analysis was performed using RStudio and Galaxy to identify differentially expressed genes. Western blotting of IL6 was used to confirm protein expression. Five circulating miRNA were identified which had 10 differentially expressed genes in bone and 11 differentially expressed genes in tissue related to the JAK-STAT pathway. IL6 in bone and EpoR in bone were highly significant and IL6 in tissue, MPL in bone, SOCS3 in tissue, JAK3 in bone and SPRED1 in bone were borderline significant. Western blot results demonstrated up-expression of IL6 in bone tissue of revision patients. Periprosthetic osteolysis and aseptic loosening can be attributed to miRNA regulation of the JAK-STAT pathway in osteoblasts and osteoclasts, leading to increased bone resorption. These findings can be used for further experiments to determine utility in the clinical setting for identifying diagnostic markers or therapeutic targets


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_11 | Pages 22 - 22
1 Nov 2022
Tolat A Salam NA Gavai P Desai V
Full Access

Abstract. Introduction. Vitamin D deficiency in the UK is well documented − 30–40% of the population. It is an essential component of calcium metabolism and adequate levels are important for bone healing. Studies have demonstrated an overall prevalence of vitamin D deficiency/insufficiency at 77% in trauma patients aged >18, deficiency alone was 39%. Adequate vitamin D levels have a positive effect on bone mineral density and callus formation at fracture sites. Methods. We conducted a retrospective consecutive case series of all patients aged 0–50 undergoing surgical management for any fracture in October 2021 to March 2022. We assessed if vitamin D levels were checked and if patients were prescribed replacement as per local guidelines. Results. A total of 131 patients were identified, (mean 29 years; 83 male and 48 female). Most cases were upper limb fractures (n=78, 60%), as opposed to lower limb (n=53, 40%). Only 20 (15%) had their levels checked, of which 13 (65%) were insufficient/deficient (10 insufficiency, 2 deficiency, 1 severe deficiency). Of these 13 patients, only 3 (23%) were prescribed replacement therapy. Conclusions. Only a small proportion of patients had their levels checked, however the majority were insufficient/deficient. The prevalence in our study is consistent with larger epidemiology studies, which reflect a higher rate of deficiency in fracture patients compared to the general population. Thus, we propose that all patients in this age group should undergo a vitamin d level check upon time of clerking and this should be accurately treated as per trust guidance


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_7 | Pages 36 - 36
1 Jul 2020
Lian WS Wang F Hsieh CK
Full Access

Aberrant infrapatellar fat metabolism is a notable feature provoking inflammation and fibrosis in the progression of osteoarthritis (OA). Irisin, a secretory subunit of fibronectin type III domain containing 5 (FNDC5) regulate adipose morphogenesis, energy expenditure, skeletal muscle, and bone metabolism. This study aims to characterize the biological roles of Irisin signaling in an infrapatellar fat formation and OA development. Injured articular specimens were harvested from 19 patients with end-stage knee OA and 11 patients with the femoral neck fracture. Knee joints in mice that overexpressed Irisin were subjected to intra-articular injection of collagenase to provoke OA. Expressions of Irisin, adipokines, and MMPs probed with RT-quantitative PCR. Infrapatellar adiposity, articular cartilage damage, and synovial integrity verified with histomorphometry and immunohistochemistry. Infrapatellar adipose and synovial tissues instead of articular cartilage exhibited Irisin immunostaining. Human OA specimens showed 40% decline in Irisin expression than the non-OA group. In vitro, the gain of Irisin function enabled synovial fibroblasts but not chondrocytes to display minor responses to the IL-1β provocation of MMP3 and MMP9 expression. Of note, Irisin signaling reduced adipogenic gene expression and adipocyte formation of mesenchymal progenitor cells. In collagenase-mediated OA knee pathogenesis, forced FNDC5 expression in articular compromised the collagenase-induced infrapatellar adipose hypertrophy, synovial hypercellularity, and membrane hyperplasia. These adipose-regulatory actions warded off the affected knees from cartilage destruction and gait aberrance. Likewise, intra-articular injection of Irisin recombinant protein mitigated the development of infrapatellar adiposity and synovitis slowing down the progression of cartilage erosion and walking profile irregularity. Affected joints and adipocytes responded to the Irisin recombinant protein treatment by reducing the expressions of cartilage-deleterious adipokines IL-6, leptin, and adiponectin through regulating PPAR&gamma, function. Irisin dysfunction is relevant to the existence of end-stage knee OA. Irisin signaling protects from excessive adipogenesis of mesenchymal precursor cells and diminished inflammation and cartilage catabolism actions aggravated by adipocytes and synovial cells. This study sheds emerging new light on the Irisin signaling stabilization of infrapatellar adipose homeostasis and the perspective of the therapeutic potential of Irisin recombinant protein for deescalating knee OA development


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_15 | Pages 40 - 40
1 Dec 2021
Wiesli M Kaiser J Gautier E Wick P Maniura K Rottmar M Wahl P
Full Access

Aim. Implant-associated infection usually require prolonged treatment or even removal of the implant. Local application of antibiotics is used commonly in orthopaedic and trauma surgery, as it allows reaching higher concentration in the affected compartment, while at the same time reducing systematic side effects. Ceftriaxone release from calcium sulphate has a particularly interesting, near-constant release profile in vitro, making it an interesting drug for clinical application. Purpose of the present study was to investigate the potential cytotoxicity of different ceftriaxone concentrations and their influence on osteogenic differentiation of human pre-osteoblasts. Method. Human pre-osteoblasts were cultured up to 28 days in different ceftriaxone concentrations, ranging between 0 mg/L and 50’000 mg/L. Cytotoxicity was determined quantitatively by measuring lactate dehydrogenase release, metabolic activity, and cell proliferation. Gene expression analysis of bone-specific markers as well as mineralization and protein expression of collagen-I (Col-I) were investigated to assess osteogenic differentiation. Results. Cytotoxic effects on human pre-osteoblasts could be shown above 15’000 mg/L after 1 and 2 days, whereas subtoxic effects could be observed at concentrations at 500 mg/L after 10 days. Cell proliferation showed no clear alteration up to 1000 mg/L, though a notable decline at 1500 mg/L could be seen after 10 days. Gene and protein expression of Col-I showed a concentration-dependent decrease at day 10 and 14, but also mineralization levels of human pre-osteoblasts presented a similar trend at day 28. Interestingly, the degree of mineralization was already impaired at concentrations above 250 mg/L. Conclusions. These findings provided extensive insights into the influence of different ceftriaxone concentrations on viability, proliferation, gene, and protein expression but also mineralization of human bone pre-osteoblasts. While short-term cytotoxicity is observed only at very high concentrations, metabolism may be impaired at much lower concentrations when exposure is prolonged. Release of ceftriaxone expected from calcium sulphate however remains below thresholds of impaired bone mineralization, even after 4 weeks of exposure. This study demonstrates the importance of properly selecting and monitoring antibiotic concentrations during clinical application


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_2 | Pages 116 - 116
1 Jan 2016
Kobayashi N Inaba Y Ike H Tezuka T Kubota S Kawamura M Saito T
Full Access

Objective. It is known that stress shielding frequently occurs after total hip arthroplasty (THA). However, the status of bone metabolism in stress shielding region is not still clear. . 18. F-fluoride positron emission tomography (PET) is a useful tool for the quantitative evaluation of bone metabolism, which uptake relates with the activity of bone formation by osteoblast. In this study, we evaluated the status of bone turnover in stress shielding region using . 18. F -fluoride PET. Design. A total of 88 hip joints from 70 cases after THA were analyzed using X-ray and . 18. F-fluoride PET. We classified these hips into 2 groups, stress shielding or non-stress shielding group. Each femur was divided into 7 regions by Gruen's zone classification. We measured SUV of . 18. F-fluoride PET in these regions and compared SUV to evaluate the difference of bone metabolism between 2 groups. Results. Stress shielding was confirmed in 75 joints, which was confirmed in particularly zone 1, 2, 7. The significant difference between the SUV in 2 groups was not confirmed. The SUV was significantly higher in the proximal area compared to the distal area. There was no differences of SUV between groups divided by post-operative period, nor implant type. Conclusions. Our results indicate that osteoblastic activities are maintained after THA even in stress shielding region. This observation indirectly suggested that high bone turn over may contribute to the BMD loss in stress shielding region


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 28 - 28
1 Jul 2020
Shao Y Chen X Luo Z
Full Access

Osteoarthritis (OA) is a chronic degenerative joint disease with cartilage degeneration, subchondral bone sclerosis, synovial inflammation and osteophyte formation. Sensory nerves play an important role in bone metabolism and in the progression of inflammation. This study explored the effects of capsaicin-induced sensory nerve denervation on OA progression in mice. This study was approved by the Institutional Animal Care and Use Committee. OA was induced via destabilization of the medial meniscus (DMM). Sensory denervation was induced by subcutaneous injection of capsaicin (90mg/kg) one week prior to DMM. One week after capsaicin injection, sensory denervation in the tibia was confirmed by immunofluorescent staining with calcitonin gene-related peptide (CGRP)-specific antibodies. Four weeks after DMM, micro-CT scans, histological analysis and RT-PCR tests were performed to evaluate OA progression. Statistical analysis was performed using SPSS 13. P values of less than 0.05 were considered statistically significant. Subcutaneous injection of capsaicin successfully induced tibial sensory denervation (n=3), which aggravated OA by increasing subchondral bone resorption. The Osteoarthritis Research Society International (OARSI) score of the capsaicin+DMM group (n=8) (11.81±2.92) was significantly higher (P=0.003) than the score of the vehicle+DMM group (n=8) (8.31±1.80). The BV/TV of the tibial subchondral bone in the capsaicin+DMM group (n=8) was 55.67%±3.08, which was significantly lower (P < 0 .001) than in the vehicle+DMM group (n=8) (86.22%±1.92). In addition, the level of expression of somatostatin in the capsaicin+DMM group (n=8) was lower than in the vehicle+DMM group (n=8) (P=0.007). Capsaicin-induced sensory denervation increased tibial subchondral bone resorption, reduced the expression of somatostatin and eventually exacerbated the existing cartilage degeneration in mice. Despite capsaicin is often used clinically to relieve OA pain, its safety is still controversial according to the OARSI guidelines for the non-surgical management of knee osteoarthritis. The findings of our study suggest that application of capsaicin, although effective in relieving pain, may accelerate the progression of existing OA


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 81 - 81
1 Jul 2020
Wang F Sun Y Ke H
Full Access

Osteoporosis accounts for a leading cause of degenerative skeletal disease in the elderly. Osteoblast dysfunction is a prominent feature of age-induced bone loss. While microRNAs regulate osteogenic cell behavior and bone mineral acquisition, however, their function to osteoblast senescence during age-mediated osteoporosis remains elusive. This study aims to utilize osteoblast-specific microRNA-29a (miR-29a) transgenic mice to characterize its role in bone cell aging and bone mass. Young (3 months old) and aged (9 months old) transgenic mice overexpressing miR-29a (miR-29aTg) driven by osteocalcin promoter and wild-type (WT) mice were bred for study. Bone mineral density, trabecular morphometry, and biomechanical properties were quantified using μCT imaging, material testing system and histomorphometry. Aged osteoblasts and senescence markers were probed using immunofluorescence, flow cytometry for apoptotic maker annexin V, and RT-PCR. Significantly decreased bone mineral density, sparse trabecular morphometry (trabecular volume, thickness, and number), and poor biomechanical properties (maximum force and breaking force) along with low miR-29a expression occurred in aged WT mice. Aging significantly upregulated the expression of senescence markers p16INK4a, p21Waf/Cip1, and p53 in osteoporotic bone in WT mice. Of note, the severity of bone mass and biomechanical strength loss, as well as bone cell senescence, was remarkably compromised in aged miR-29aTg mice. In vitro, knocking down miR-29a accelerated senescent (β-galactosidase activity and senescence markers) and apoptotic reactions (capsas3 activation and TUNEL staining), but reduced mineralized matrix accumulation in osteoblasts. Forced miR-29a expression attenuated inflammatory cytokine-induced aging process and retained osteogenic differentiation capacity. Mechanistically, miR-29a dragged osteoblast senescence through targeting 3′-untranslated region of anti-aging regulator FoxO3 to upregulate that of expression as evident from luciferase activity assessment. Low miR-29a signaling speeds up aging-induced osteoblast dysfunction and osteoporosis development. Gain of miR-29a function interrupts osteoblast senescence and shields bone tissue from age-induced osteoporosis. The robust analysis sheds light to the protective actions of miR-29a to skeletal metabolism and conveys a perspective of miR-29a signaling enhancement beneficial for aged skeletons


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 22 - 22
1 Jul 2020
Tsang J Gwynne P Gallagher M Simpson H
Full Access

Staphylococcus aureus is responsible for 60–70% infections of surgical implants and prostheses in Orthopaedic surgery, with cumulative treatment costs for all prosthetic joint infections estimated to be ∼ $1 billion per annum (UK and North America). Its ability to develop resistance or tolerance to a diverse range of antimicrobial compounds, threatens to halt routine elective implant surgery. One strategy to overcome this problem is to look beyond traditional antimicrobial drug therapies and investigate other treatment modalities. Biophysical modalities, such as ultrasound, are poorly explored, but preliminary work has shown potential benefit, especially when combined with existing antibiotics. Low intensity pulsed ultrasound is already licensed for clinical use in fracture management and thus could be translated quickly into a clinical treatment. Using a methicillin-sensitive S. aureus reference strain and the dissolvable bead assay, biofilms were challenged with gentamicin +/− low-intensity ultrasound (1.5MHz, 30mW/cm2, pulse duration 200µs/1KHz) for 180 minutes and 20 minutes, respectively. The primary outcome measures were colony-forming units/mL (CFU/mL) and the minimum biofilm eradication concentration (MBEC) of gentamicin. The mean number of S. aureus within control biofilms was 1.04 × 109 CFU/mL. Assessment of cellular metabolism was conducted using a liquid-chromatography-mass spectrometry, as well as a triphenyltetrazolium chloride assay coupled with spectrophotometry. There was no clinically or statistically significant (p=0.531) reduction in viable S. aureus following ultrasound therapy alone. The MBEC of gentamicin for this S. aureus strain was 256 mg/L. The MBEC of gentamicin with the addition of ultrasound was reduced to 64mg/L. Metabolic activity of biofilm-associated S. aureus was increased by 25% following ultrasound therapy (p < 0 .0001), with identification of key biosynthetic pathways activated by non-lethal dispersal. Low intensity pulsed ultrasound was associated with a four-fold reduction in the effective biofilm eradication concentration of gentamicin, bringing the MBEC of gentamicin to within clinically achievable concentrations. The mechanism of action was due to partial disruption of the extracellular matrix which led to an increase of nutrient availability and oxygen tension within the biofilm. This metabolic stimulus was responsible for the reversal of gentamicin tolerance in the biofilm-associated S. aureus


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXIX | Pages 165 - 165
1 Sep 2012
Gulihar A Hadi M Taylor G
Full Access

Background. Continuous post-operative infusion of local anaesthetic solutions has been implicated as the causative factor in many cases of chondrolysis. Recent in-vitro studies have shown that even a single exposure to local anaesthetic can cause apoptosis and mitochondrial dysfunction leading to chondrocyte death. Glucosamine has been shown to have a protective and reparative effect on articular cartilage. Aims. To compare the effect of a single exposure of different local anaesthetic solutions on human articular cartilage and to investigate the protective and reparative effects of Glucosamine on articular cartilage exposed to 0.5% Bupivacaine. Methods. Chondral explants (n=354) were obtained from femoral heads of hip fracture patients undergoing hemiarthroplasty. Each specimen was exposed to one of 8 test solutions for one hour. The specimens were then incubated in culture medium containing radio-labelled 35-sulphur for 16 hours. The uptake of 35-S by each specimen was measured to give an estimate of proteoglycan metabolism. Test solutions. 1. 1% Lidocaine 2. 2% Lidocaine 3. 0.25% Bupivacaine, 4. 0.5% Bupivacaine, 5. 0.5% Levo-Bupivacaine 6. Control solution of M199 culture medium. 7. To investigate its protective effect, 100 micrograms of Glucosamine was added along with 0.5% Bupivacaine 8. To investigate its reparative effect, Glucosamine was added after exposure to Bupivacaine for an hour. Results. Compared to the control solution, the inhibition of proteoglycan metabolism was 64% with 1% Lidocaine(p< 0.001), 79% with 2% Lidocaine(p< 0.001), 61% with 0.25% Bupivacaine(p< 0.001), 85% with 0.5% Bupivacaine(p< 0.001) and 77% with 0.5% Levo-Bupivacaine(p< 0.001). Adding Glucosamine reduced Bupivacaine toxicity to 43%(p< 0.001). Glucosamine marginally repaired the damage caused by Bupivacaine, with inhibition of proteoglycan metabolism at 70%(p=0.004). Conclusion. All local anaesthetic solutions were toxic to articular cartilage. The addition of Glucosamine to 0.5% Bupivacaine protected against its toxicity to articular cartilage


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 75 - 75
1 Jul 2020
Algate K Cantley M Fitzsimmons T Paton S Wagner F Zannettino A Holson E Fairlie D Haynes D
Full Access

The inflammatory cascade associated with prosthetic implant wear debris, in addition to diseases such as rheumatoid arthritis and periodontitis, it is shown to drastically influence bone turnover in the local environment. Ultimately, this leads to enhanced osteoclastic resorption and the suppression of bone formation by osteoblasts causing implant failure, joint failure, and tooth loosening in the respective conditions if untreated. Regulation of this pathogenic bone metabolism can enhance bone integrity and the treatment bone loss. The current study used novel compounds that target a group of enzymes involved with the epigenetic regulation of gene expression and protein function, histone deacetylases (HDAC), to reduce the catabolism and improve the anabolism of bone material in vitro. Human osteoclasts were differentiated from peripheral blood monocytes and cultured over a 17 day period. In separate experiments, human osteoblasts were differentiated from human mesenchymal stem cells isolated from bone chips collected during bone marrow donations, and cultured over 21 days. In these assays, cells were exposed to the key inflammatory cytokine involved with the cascade of the abovementioned conditions, tumour necrosis factor-α (TNFα), to represent an inflammatory environment in vitro. Cells were then treated with HDAC inhibitors (HDACi) that target the individual isoforms previously shown to be altered in pathological bone loss conditions, HDAC-1, −2, −5 and −7. Analysis of bone turnover through dentine resorptive measurements and bone mineral deposition analyses were used to quantify the activity of bone cells. Immunohistochemistry of tartrate resistant acid phosphatase (TRAP), WST-assay and automated cell counting was used to assess cell formation, viability and proliferation rates. Real-time quantitative PCR was conducted to identify alterations in the expression of anti- and pro-inflammatory chemokines and cytokines, osteoclastic and osteoblastic factors, in addition to multiplex assays for the quantification of cytokine/chemokine release in cell supernatant in response to HDACi treatments in the presence or absence of TNFα. TNFα stimulated robust production of pro-inflammatory cytokines and chemokines by PBMCs (IL-1β, TNFα, MCP1 and MIP-1α) both at the mRNA and protein level (p < 0 .05). HDACi that target the isoforms HDAC-1 and −2 in combination significantly suppressed the expression or production of these inflammatory factors with greater efficacy than targeting these HDAC isoforms individually. Suppression of HDAC-5 and −7 had no effect on the inflammatory cascade induced by TNFα in monocytes. During osteoclastic differentiation, TNFα stimulated the size and number of active cells, increasing the bone destruction observed on dentine slices (p < 0 .05). Targeting HDAC-1 and −2 significantly reduced bone resorption through modulation of the expression of RANKL signalling factors (NFATc1, TRAF6, CatK, TRAP, and CTR) and fusion factors (DC-STAMP and β3-integerin). Conversely, the anabolic activity of osteoblasts was preserved with HDACi targeting HDAC-5 and −7, significantly increasing their mineralising capacity in the presence of TNFαthrough enhanced RUNX2, OCN and Coll-1a expression. These results identify the therapeutic potential of HDACi through epigenetic regulation of cell activity, critical to the processes of inflammatory bone destruction


Bone & Joint Research
Vol. 13, Issue 8 | Pages 411 - 426
28 Aug 2024
Liu D Wang K Wang J Cao F Tao L

Aims

This study explored the shared genetic traits and molecular interactions between postmenopausal osteoporosis (POMP) and sarcopenia, both of which substantially degrade elderly health and quality of life. We hypothesized that these motor system diseases overlap in pathophysiology and regulatory mechanisms.

Methods

We analyzed microarray data from the Gene Expression Omnibus (GEO) database using weighted gene co-expression network analysis (WGCNA), machine learning, and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis to identify common genetic factors between POMP and sarcopenia. Further validation was done via differential gene expression in a new cohort. Single-cell analysis identified high expression cell subsets, with mononuclear macrophages in osteoporosis and muscle stem cells in sarcopenia, among others. A competitive endogenous RNA network suggested regulatory elements for these genes.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 46 - 46
1 Jul 2020
Adoungotchodo A Lerouge S Alinejad Y Mwale F Grant M Epure L Antoniou J
Full Access

Intervertebral disc (IVD) degeneration plays a major role in low back pain which is the leading cause of disability. Current treatments in severe cases require surgical intervention often leading to adjacent segment degeneration. Injectable hydrogels have received much attention in recent years as scaffolds for seeding cells to replenish disc cellularity and restore disc properties and function. However, they generally present poor mechanical properties. In this study, we investigated several novel thermosensitive chitosan hydrogels for their ability to mimic the mechanical properties of the nucleus pulposus (NP) while being able to sustain the viability of NP cells, and retain proteoglycans. CH hydrogels were prepared by mixing the acidic chitosan solution (2% w/v) with various combinations of three gelling agents: sodium hydrogen carbonate (SHC) and/or beta-glycerophosphate (BGP) and/or phosphate buffer (PB) (either BGP0.4M, SHC0.075M-BGP0.1M, SHC0.075M-PB0.02M or SHC0.075M-PB0.04M). The gelation speed was assessed by following rheological properties within 1h at 37°C (strain 5% and 1Hz). The mechanical properties were characterized and compared with that of human NP tissues. Elastic properties of the hydrogels were studied by evaluating the secant modulus in unconfined compression. Equilibrium modulus was also measured, using an incremental stress-relaxation test 24h after gelation in unconfined compression (5% strain at 5%/s followed by 5min relaxation, five steps). Cells from bovine IVD were encapsulated in CH-based gels and maintained in culture for 14 days. Cytocompatibility was assessed by measuring cell viability, metabolism and DNA content. Glycosaminoglycan (GAG) synthesis (retained in the gel and released) was determined using DMMB assay. Finally injectability was tested using human cadaveric discs. Unconfined compression confirmed drastically enhanced mechanical properties compared to conventional CH-BGP hydrogels (secant Young modulus of 105 kPa for SHC0.075PB0.02 versus 3–6 kPa for BGP0.04). More importantly, SHC0.075PB0.02 and SHC0.075BGP0.1 hydrogels exhibited mechanical properties very similar to NP tissue. For instance, equilibrium modulus was 5.2±0.6 KPa for SHC0.075PB0.02 and 8±0.8 KPa for SHC0.075BGP0.1 compared to 6.1±1.7 KPa for human NP tissue. Rheological properties and gelation time (G′=G″ after less than 15 s at 37°C, and rapid increase of G') of these hydrogels also appear to be adapted to this application. Cell survival was greater than 80% in SHC0.075BGP0.1 and SHC0.075PB0.02 hydrogels. Cells encapsulated in the new formulations also showed significantly higher metabolic activity and DNA content after 14 days of incubation compared to cells encapsulated in BGP0.4 hydrogel. Cells encapsulated in SHC0.075BGP0.1 and SHC0.075PB0.02 produced significantly higher amounts of glycosaminoglycans (GAG) compared to cells encapsulated in SHC0.075PB0.04 and BGP0.4 hydrogels. The total amount of GAG was higher in SHC0.075BGP0.1 hydrogel compared to SHC0.075PB0.02. Interestingly, both the SHC0.075BGP0.1 and SHC0.075PB0.02 hydrogels retained similar amounts of GAG. Injectability through a 25G syringe, filling of nuclear clefts and good retention in human degenerated discs was demonstrated for SHC0.075PB0.02 hydrogel. SHC0.075BGP0.1 appears to be a particularly promising injectable scaffold for IVD repair by providing suitable structural environment for cell survival, ECM production and mechanical properties very similar to that of NP tissue


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_14 | Pages 24 - 24
1 Dec 2019
Butini ME Abbandonato G Rienzo CD Trampuz A Luca MD
Full Access

Aim. Most orthopedic infections are due to the microbial colonization of abiotic surfaces, which evolves into biofilm formation. Within biofilms, persisters constitute a microbial subpopulation of cells characterized by a lower metabolic-activity, being phenotipically tolerant to high concentrations of antibiotics. Due to their extreme tolerance, persisters may cause relapses upon treatment discontinuation, leading to infection recalcitrance hindering the bony tissue regeneration. Using isothermal microcalorimetry (IMC), we aimed to evaluate in vitro the presence of persisters in a methicillin-resistant Staphylococcus aureus (MRSA) biofilm after treatment with high concentrations of vancomycin (VAN) and their ability to revert to a normal-growing phenotype during incubation in fresh medium without antibiotic. Moreover, the ability of daptomycin to eradicate the infection by killing persisters was also investigated. Method. A 24h-old MRSA ATCC 43300 biofilm was exposed to 1024 µg/ml VAN for 24h. Metabolism-related heat of biofilm-embedded cells, either during or after VAN-treatment, was monitored in real-time by IMC for 24 or 48h, respectively. To evaluate the presence of VAN-derived “persisters” after antibiotic treatment, beads were sonicated and detached free-floating bacteria were further challenged with 100xMIC VAN (100 µg/ml) in PBS+1% Cation Adjusted Mueller Hinton Broth (CAMHB).. Suspensions were plated for colony counting. The resumption of persister cells' normal growth was analysed by IMC on dislodged trated cells for 15h in CAMHB. Activity of 16 µg/ml daptomycin was assessed against persister cells by colony counting. Results. When incubated with 1024 µg/ml VAN, MRSA biofilm produced undetectable heat, suggesting a strong reduction of cell viability and/or cellular metabolism. However, the same samples re-inoculated in fresh medium produced a detectable and delayed metabolism-related heat signal, similarly to that generated by persister cells. The following exposure to 100xMIC VAN resulted in neither complete killing nor bacterial growth, strongly supporting the hypothesis of a persistent phenotype. IMC analysis indicated that VAN-treated biofilm cells resumed normal growth with a ∼3h-delay, as compared to the untreated growth control. Daptomycin treatment yielded a complete eradication of persister cells selected after VAN treatment. Conclusions. Hostile environmental conditions (e.g. high antibiotic bactericidal concentrations) select for persister cells in MRSA biofilm after 24h-treatment in vitro. A staggered treatment vancomycin/daptomycin allows complete biofilm eradication. These results support the use in clinical practice of a therapeutic regimen based on the combined use of antibiotics to kill persisters and eradicate MRSA biofilms. IMC represents a suitable technique to detect persisters and characterize in real-time their reversion to a metabolically-active phenotype


Bone & Joint Open
Vol. 4, Issue 3 | Pages 146 - 157
7 Mar 2023
Camilleri-Brennan J James S McDaid C Adamson J Jones K O'Carroll G Akhter Z Eltayeb M Sharma H

Aims

Chronic osteomyelitis (COM) of the lower limb in adults can be surgically managed by either limb reconstruction or amputation. This scoping review aims to map the outcomes used in studies surgically managing COM in order to aid future development of a core outcome set.

Methods

A total of 11 databases were searched. A subset of studies published between 1 October 2020 and 1 January 2011 from a larger review mapping research on limb reconstruction and limb amputation for the management of lower limb COM were eligible. All outcomes were extracted and recorded verbatim. Outcomes were grouped and categorized as per the revised Williamson and Clarke taxonomy.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVIII | Pages 31 - 31
1 Sep 2012
Gawri R Mwale F Ouellet JA Steffen T Roughley PJ Antoniou J Haglund L
Full Access

Purpose. Disc degeneration is known to occur early in adult life, but at present there is no medical treatment to reverse or even retard the problem. Development of medical treatments is complicated by the lack of a validated long term organ culture model in which therapeutic candidates can be studied. The objective of this study was to optimize and validate an organ culture system for intact human intervertebral disc (IVD), which could be used subsequently to determine whether synthetic peptide growth factors can stimulate disc cell metabolism and initiate a repair response. Method. Seventy lumbar IVDs, from 14 individuals, were isolated within 24 h after death. Discs were prepared for organ culture by removing bony endplates but retaining cartilaginous endplates (CEP). Discs were cultured with no external load applied. The effects of glucose and FBS concentrations were evaluated. Dulbeccos Modified Eagle Media (DMEM) was supplemented with glucose, 4.5g/L or 1g/L, referred to as high and low (physiological) glucose, and FBS, 5% or 1%, referred to as high and low FBS, respectively. After a four week culture period, samples were taken across the disc using a 4 mm biopsy punch. Cell viability was analyzed using a live/dead fluorescence assay (Live/Dead, Invitrogen) and visualized by confocal microscopy. CEP discs were also placed in long term culture for four months, and cell viability was assessed. Western bolt analysis for the G1 domain of aggrecan was also performed to assess the effect of nutritional state on disc catabolism. Results. Cell viability in CEP isolated discs was evaluated after four weeks and four months of organ culture under high and physiological nutritional state. Previous studies have shown that high glucose levels are needed to maintain cell viability in organ culture, but in our model 96–98% live cells were present throughout the disc independent of FBS and glucose levels and the duration of culture tested. Western blot probing for the G1 domain of aggrecan showed no difference with the change of nutritional state across all regions indicating that low nutritional state had no detrimental effect on disc metabolism. Conclusion. We have developed a novel technique for isolation and culturing of intact IVDs. The described CEP system maintained sufficient nutrient supply and high cell survival in all regions of the disc for up to four months of culture also under physiological culturing condition. As the CEP system maintains high cell viability in long term cultures, it is a suitable model in which the regenerative effect of various bioactive peptides can be studied. The availability of an intact disc organ culture system has considerable advantage over the culture of isolated disc cells, as it maintains the cells in their unique microenvironment, so making any response to catabolic or anabolic agents more physiologically relevant