Previous studies have described an age-dependent distortion of bone microarchitecture for α-CGRP-deficient mice (3). In addition, we observed changes in cell survival and activity of osteoblasts and osteoclasts isolated from young wildtype (WT) mice when stimulated with α-CGRP whereas loss of α-CGRP showed only little effects on bone cell
Introduction. Some patients complain ingrown pain or discomfort after implanting Co-Cr conventional endprosthesis of the hip. Some of this complaint may be attributable for effect on cartilage
Large cartilage lesions in younger patients can be treated by fresh osteochondral allograft transplantation, a surgical technique that relies on stable initial fixation and a minimum chondrocyte viability of 70% in the donor tissue to be successful. The Missouri Osteochondral Allograft Preservation System (MOPS) may extend the time when stored osteochondral tissues remain viable. This study aimed to provide an independent evaluation of MOPS storage by evaluating chondrocyte viability, chondrocyte
Aim. To make an inoculum for induction of Implant-Associated Osteomyelitis (IAO) in pigs based on bacterial aggregates resembling those found on the human skin, i.e. aggregates of 5–15 µm with low metabolic activity. The aggregates were evaluated and compared to a standard planktonic bacterial inoculum. Method. The porcine Staphylococcus aureus strain S54F9 was cultured in Tryptone Soya Broth for seven days. Subsequently, the culture was filtered through cell strainers with pore sizes of 15 µm and 5 µm, respectively. The fraction of 5–15 µm aggregates in the top of the 5 µm filter was collected as the aggregate-inoculum. The separation of aggregates into different size fractions was evaluated by light microscopy. The
Aim. Bone regeneration following the treatment of Staphylococcal bone infection or osteomyelitis is challenging due to the ability of Staphylococcus aureus to invade and persist within bone cells, which could possibly lead to antimicrobial tolerance and incessant bone destruction. Here, we investigated the influence of Staphylococcal bone infection on osteoblasts
Hip and knee arthroplasty (HKA) are two of the most successful orthopaedic procedures. However, one major complication necessitating revision surgery is osteolysis causing aseptic loosening of the prosthesis. JAK-STAT has been demonstrated to influence bone
Abstract. Introduction. Vitamin D deficiency in the UK is well documented − 30–40% of the population. It is an essential component of calcium
Aberrant infrapatellar fat
Aim. Implant-associated infection usually require prolonged treatment or even removal of the implant. Local application of antibiotics is used commonly in orthopaedic and trauma surgery, as it allows reaching higher concentration in the affected compartment, while at the same time reducing systematic side effects. Ceftriaxone release from calcium sulphate has a particularly interesting, near-constant release profile in vitro, making it an interesting drug for clinical application. Purpose of the present study was to investigate the potential cytotoxicity of different ceftriaxone concentrations and their influence on osteogenic differentiation of human pre-osteoblasts. Method. Human pre-osteoblasts were cultured up to 28 days in different ceftriaxone concentrations, ranging between 0 mg/L and 50’000 mg/L. Cytotoxicity was determined quantitatively by measuring lactate dehydrogenase release, metabolic activity, and cell proliferation. Gene expression analysis of bone-specific markers as well as mineralization and protein expression of collagen-I (Col-I) were investigated to assess osteogenic differentiation. Results. Cytotoxic effects on human pre-osteoblasts could be shown above 15’000 mg/L after 1 and 2 days, whereas subtoxic effects could be observed at concentrations at 500 mg/L after 10 days. Cell proliferation showed no clear alteration up to 1000 mg/L, though a notable decline at 1500 mg/L could be seen after 10 days. Gene and protein expression of Col-I showed a concentration-dependent decrease at day 10 and 14, but also mineralization levels of human pre-osteoblasts presented a similar trend at day 28. Interestingly, the degree of mineralization was already impaired at concentrations above 250 mg/L. Conclusions. These findings provided extensive insights into the influence of different ceftriaxone concentrations on viability, proliferation, gene, and protein expression but also mineralization of human bone pre-osteoblasts. While short-term cytotoxicity is observed only at very high concentrations,
Objective. It is known that stress shielding frequently occurs after total hip arthroplasty (THA). However, the status of bone
Osteoarthritis (OA) is a chronic degenerative joint disease with cartilage degeneration, subchondral bone sclerosis, synovial inflammation and osteophyte formation. Sensory nerves play an important role in bone
Osteoporosis accounts for a leading cause of degenerative skeletal disease in the elderly. Osteoblast dysfunction is a prominent feature of age-induced bone loss. While microRNAs regulate osteogenic cell behavior and bone mineral acquisition, however, their function to osteoblast senescence during age-mediated osteoporosis remains elusive. This study aims to utilize osteoblast-specific microRNA-29a (miR-29a) transgenic mice to characterize its role in bone cell aging and bone mass. Young (3 months old) and aged (9 months old) transgenic mice overexpressing miR-29a (miR-29aTg) driven by osteocalcin promoter and wild-type (WT) mice were bred for study. Bone mineral density, trabecular morphometry, and biomechanical properties were quantified using μCT imaging, material testing system and histomorphometry. Aged osteoblasts and senescence markers were probed using immunofluorescence, flow cytometry for apoptotic maker annexin V, and RT-PCR. Significantly decreased bone mineral density, sparse trabecular morphometry (trabecular volume, thickness, and number), and poor biomechanical properties (maximum force and breaking force) along with low miR-29a expression occurred in aged WT mice. Aging significantly upregulated the expression of senescence markers p16INK4a, p21Waf/Cip1, and p53 in osteoporotic bone in WT mice. Of note, the severity of bone mass and biomechanical strength loss, as well as bone cell senescence, was remarkably compromised in aged miR-29aTg mice. In vitro, knocking down miR-29a accelerated senescent (β-galactosidase activity and senescence markers) and apoptotic reactions (capsas3 activation and TUNEL staining), but reduced mineralized matrix accumulation in osteoblasts. Forced miR-29a expression attenuated inflammatory cytokine-induced aging process and retained osteogenic differentiation capacity. Mechanistically, miR-29a dragged osteoblast senescence through targeting 3′-untranslated region of anti-aging regulator FoxO3 to upregulate that of expression as evident from luciferase activity assessment. Low miR-29a signaling speeds up aging-induced osteoblast dysfunction and osteoporosis development. Gain of miR-29a function interrupts osteoblast senescence and shields bone tissue from age-induced osteoporosis. The robust analysis sheds light to the protective actions of miR-29a to skeletal
Staphylococcus aureus is responsible for 60–70% infections of surgical implants and prostheses in Orthopaedic surgery, with cumulative treatment costs for all prosthetic joint infections estimated to be ∼ $1 billion per annum (UK and North America). Its ability to develop resistance or tolerance to a diverse range of antimicrobial compounds, threatens to halt routine elective implant surgery. One strategy to overcome this problem is to look beyond traditional antimicrobial drug therapies and investigate other treatment modalities. Biophysical modalities, such as ultrasound, are poorly explored, but preliminary work has shown potential benefit, especially when combined with existing antibiotics. Low intensity pulsed ultrasound is already licensed for clinical use in fracture management and thus could be translated quickly into a clinical treatment. Using a methicillin-sensitive S. aureus reference strain and the dissolvable bead assay, biofilms were challenged with gentamicin +/− low-intensity ultrasound (1.5MHz, 30mW/cm2, pulse duration 200µs/1KHz) for 180 minutes and 20 minutes, respectively. The primary outcome measures were colony-forming units/mL (CFU/mL) and the minimum biofilm eradication concentration (MBEC) of gentamicin. The mean number of S. aureus within control biofilms was 1.04 × 109 CFU/mL. Assessment of cellular
Background. Continuous post-operative infusion of local anaesthetic solutions has been implicated as the causative factor in many cases of chondrolysis. Recent in-vitro studies have shown that even a single exposure to local anaesthetic can cause apoptosis and mitochondrial dysfunction leading to chondrocyte death. Glucosamine has been shown to have a protective and reparative effect on articular cartilage. Aims. To compare the effect of a single exposure of different local anaesthetic solutions on human articular cartilage and to investigate the protective and reparative effects of Glucosamine on articular cartilage exposed to 0.5% Bupivacaine. Methods. Chondral explants (n=354) were obtained from femoral heads of hip fracture patients undergoing hemiarthroplasty. Each specimen was exposed to one of 8 test solutions for one hour. The specimens were then incubated in culture medium containing radio-labelled 35-sulphur for 16 hours. The uptake of 35-S by each specimen was measured to give an estimate of proteoglycan
This study explored the shared genetic traits and molecular interactions between postmenopausal osteoporosis (POMP) and sarcopenia, both of which substantially degrade elderly health and quality of life. We hypothesized that these motor system diseases overlap in pathophysiology and regulatory mechanisms. We analyzed microarray data from the Gene Expression Omnibus (GEO) database using weighted gene co-expression network analysis (WGCNA), machine learning, and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis to identify common genetic factors between POMP and sarcopenia. Further validation was done via differential gene expression in a new cohort. Single-cell analysis identified high expression cell subsets, with mononuclear macrophages in osteoporosis and muscle stem cells in sarcopenia, among others. A competitive endogenous RNA network suggested regulatory elements for these genes.Aims
Methods
The inflammatory cascade associated with prosthetic implant wear debris, in addition to diseases such as rheumatoid arthritis and periodontitis, it is shown to drastically influence bone turnover in the local environment. Ultimately, this leads to enhanced osteoclastic resorption and the suppression of bone formation by osteoblasts causing implant failure, joint failure, and tooth loosening in the respective conditions if untreated. Regulation of this pathogenic bone
Intervertebral disc (IVD) degeneration plays a major role in low back pain which is the leading cause of disability. Current treatments in severe cases require surgical intervention often leading to adjacent segment degeneration. Injectable hydrogels have received much attention in recent years as scaffolds for seeding cells to replenish disc cellularity and restore disc properties and function. However, they generally present poor mechanical properties. In this study, we investigated several novel thermosensitive chitosan hydrogels for their ability to mimic the mechanical properties of the nucleus pulposus (NP) while being able to sustain the viability of NP cells, and retain proteoglycans. CH hydrogels were prepared by mixing the acidic chitosan solution (2% w/v) with various combinations of three gelling agents: sodium hydrogen carbonate (SHC) and/or beta-glycerophosphate (BGP) and/or phosphate buffer (PB) (either BGP0.4M, SHC0.075M-BGP0.1M, SHC0.075M-PB0.02M or SHC0.075M-PB0.04M). The gelation speed was assessed by following rheological properties within 1h at 37°C (strain 5% and 1Hz). The mechanical properties were characterized and compared with that of human NP tissues. Elastic properties of the hydrogels were studied by evaluating the secant modulus in unconfined compression. Equilibrium modulus was also measured, using an incremental stress-relaxation test 24h after gelation in unconfined compression (5% strain at 5%/s followed by 5min relaxation, five steps). Cells from bovine IVD were encapsulated in CH-based gels and maintained in culture for 14 days. Cytocompatibility was assessed by measuring cell viability,
Aim. Most orthopedic infections are due to the microbial colonization of abiotic surfaces, which evolves into biofilm formation. Within biofilms, persisters constitute a microbial subpopulation of cells characterized by a lower metabolic-activity, being phenotipically tolerant to high concentrations of antibiotics. Due to their extreme tolerance, persisters may cause relapses upon treatment discontinuation, leading to infection recalcitrance hindering the bony tissue regeneration. Using isothermal microcalorimetry (IMC), we aimed to evaluate in vitro the presence of persisters in a methicillin-resistant Staphylococcus aureus (MRSA) biofilm after treatment with high concentrations of vancomycin (VAN) and their ability to revert to a normal-growing phenotype during incubation in fresh medium without antibiotic. Moreover, the ability of daptomycin to eradicate the infection by killing persisters was also investigated. Method. A 24h-old MRSA ATCC 43300 biofilm was exposed to 1024 µg/ml VAN for 24h. Metabolism-related heat of biofilm-embedded cells, either during or after VAN-treatment, was monitored in real-time by IMC for 24 or 48h, respectively. To evaluate the presence of VAN-derived “persisters” after antibiotic treatment, beads were sonicated and detached free-floating bacteria were further challenged with 100xMIC VAN (100 µg/ml) in PBS+1% Cation Adjusted Mueller Hinton Broth (CAMHB).. Suspensions were plated for colony counting. The resumption of persister cells' normal growth was analysed by IMC on dislodged trated cells for 15h in CAMHB. Activity of 16 µg/ml daptomycin was assessed against persister cells by colony counting. Results. When incubated with 1024 µg/ml VAN, MRSA biofilm produced undetectable heat, suggesting a strong reduction of cell viability and/or cellular
Chronic osteomyelitis (COM) of the lower limb in adults can be surgically managed by either limb reconstruction or amputation. This scoping review aims to map the outcomes used in studies surgically managing COM in order to aid future development of a core outcome set. A total of 11 databases were searched. A subset of studies published between 1 October 2020 and 1 January 2011 from a larger review mapping research on limb reconstruction and limb amputation for the management of lower limb COM were eligible. All outcomes were extracted and recorded verbatim. Outcomes were grouped and categorized as per the revised Williamson and Clarke taxonomy.Aims
Methods
Purpose. Disc degeneration is known to occur early in adult life, but at present there is no medical treatment to reverse or even retard the problem. Development of medical treatments is complicated by the lack of a validated long term organ culture model in which therapeutic candidates can be studied. The objective of this study was to optimize and validate an organ culture system for intact human intervertebral disc (IVD), which could be used subsequently to determine whether synthetic peptide growth factors can stimulate disc cell