Osteoarthritis is a global problem and the treatment of early disease is a clear area of unmet clinical need. Treatment strategies include cell therapies utilising chondrocytes e.g. autologous chondrocyte implantation and
INTRODUCTION. The hip arthroplasty implant is currently growing up both in orthopedic and trauma practice. This increases the frequency of prosthesis revision due to implant loosening often associated with periprosthetic osteolysis that determine the failure and lead to a loss of bone substance. Nowadays there are numerous biotechnologies seeking to join or substitute the autologous or omologous bone use. These biotechnologies (mesenchymal stromal cells, growth factors and bone substitutes) may be used in such situations, however, the literature doesn't offer class 1 clinical evidences in this field of application. MATERIALS AND METHODS. We performed a literature review using the universally validated search engines in the biomedical field: PubMed / Medline, Google Scholar, Scopus, EMBASE. The keywords used were: “Growth Factors”, “Platelet Rich Plasma”, “OP-1”, “BMP”, “BMP-2”, “BMP-7”, “Demineralized Bone Matrix”, “Stem Cell”, “Bone Marrow”, “Scaffold”, “Bone Substitutes” were crossed with “hip”, “revision”, “replacement” / “arthroplasty”, “bone loss” / “osteolysis.”. RESULTS. The search led to 321 items, of these were considered relevant: as regards the growth factors 21 articles related to in vivo animal studies and 2 articles of human clinical use of BMPs and 1 single article on the use of PRP; as regards the
INTRODUCTION. The hip arthroplasty implant is currently growing up both in orthopedic and trauma practice. This increases the frequency of prosthesis revision due to implant loosening often associated with periprosthetic osteolysis that determine the failure and lead to a loss of bone substance. Nowadays there are numerous biotechnologies seeking to join or substitute the autologous or omologous bone use. These biotechnologies (mesenchymal stromal cells, growth factors and bone substitutes) may be used in such situations, however, the literature doesn't offer class 1 clinical evidences in this field of application. MATERIALS AND METHODS. We performed a literature review using the universally validated search engines in the biomedical field: PubMed / Medline, Google Scholar, Scopus, EMBASE. The keywords used were: “Growth Factors”, “Platelet Rich Plasma”, “OP-1”, “BMP”, “BMP-2”, “BMP-7”, “Demineralized Bone Matrix”, “Stem Cell”, “Bone Marrow”, “Scaffold”, “Bone Substitutes” were crossed with “hip”, “revision”, “replacement” / “arthroplasty”, “bone loss” / “osteolysis.”. RESULTS. The search led to 321 items, of these were considered relevant: as regards the growth factors 21 articles related to in vivo animal studies and 2 articles of human clinical use of BMPs and 1 single article on the use of PRP; as regards the
Osteoarthritis (OA) is the most common form of arthritis worldwide. It is a major cause of disability in the adult population with its prevalence expected to increase dramatically over the next 20 years. Although current therapies can alleviate symptoms and improve function in early course of the disease, OA inevitably progresses to end-stage disease requiring total joint arthroplasty.
INTRODUCTION. The uncertainty of the biological effects of wear and corrosion from Metal-on-metal (MoM) implants has initiated a debate on their safety and use. Generally, the release of wear particles from MoM hip implants can clinically manifest in aseptic osteolysis. In our study, the effect of MoM-wear particles and particle originated Co and Cr ions on
Purpose.
Bone marrow-derived