Abstract. Objectives. Meniscus allograft and synthetic meniscus scaffold (Actifit. ®. ) transplantation have shown promising outcomes for symptoms relief in patients with meniscus deficient knees. Untreated chondral defects can place excessive load onto meniscus transplants and cause early graft failure. We hypothesised that combined ACI and allograft or synthetic meniscus replacement might provide a solution for meniscus deficient individuals with co-existing lesions in cartilage and meniscus. Methods. We retrospectively collected data from 17 patients (16M, 1F, aged 40±9.26) who had ACI and
Meniscal injuries are often associated with an active lifestyle. The damage of meniscal tissue puts young patients at higher risk of undergoing meniscal surgery and, therefore, at higher risk of osteoarthritis. In this study, we undertook proof-of-concept research to develop a cellularized human meniscus by using 3D bioprinting technology. A 3D model of bioengineered medial meniscus tissue was created, based on MRI scans of a human volunteer. The Digital Imaging and Communications in Medicine (DICOM) data from these MRI scans were processed using dedicated software, in order to obtain an STL model of the structure. The chosen 3D Discovery printing tool was a microvalve-based inkjet printhead. Primary mesenchymal stem cells (MSCs) were isolated from bone marrow and embedded in a collagen-based bio-ink before printing. LIVE/DEAD assay was performed on realized cell-laden constructs carrying MSCs in order to evaluate cell distribution and viability.Objectives
Methods