Advertisement for orthosearch.org.uk
Results 1 - 4 of 4
Results per page:
Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 237 - 237
1 Mar 2013
Lazaro LE Sculco PK Pardee NC Klinger C Su E Helfet DL Lorich DG
Full Access

Introduction. The debate regarding the importance of preserving the blood supply to the femoral head (FH) and neck during hip resurfacing arthroplasty (HRA) is ongoing. Several surgeons continue to advocate for the preservation of the blood supply to the resurfaced heads for both the current HRA techniques and more biologic approaches for FH resurfacing. Despite alternative blood-preserving approaches for HRA, many surgeons continue to use the posterior approach (PA) due to personal preference and comfort. It is commonly accepted that the PA inevitably damages the deep branch of the medial femoral circumflex artery (MFCA). This study seeks to evaluate and measure the anatomical course of the ascending and deep branch of the MFCA to better describe the area in danger during the posterior approach. Methods. In 20 fresh-frozen cadaveric hips, we cannulated the MFCA and injected a urethane compound. The Kocher-Langenbeck approach was used in all specimens. The deep branch of the MFCA was identified at the proximal border of the QF and measurements were taken. The QF was incised medially and elevated laterally, maintaining the relationship of the ascending branch and QF, and distances from the lesser trochanter were measured. The deep branch was dissected and followed to its capsular insertion to assess the course and relation to the obturatur externus (OE) tendon and the conjoint tendon (CT) of the short external rotators. Results. Gross dissection revealed that the transition point from transverse to ascending branch of the MFCA at the anterior surface of the QF was at an average distance of 2.2 cm (range 2–2.3 cm) proximal and 1.2 cm (range 0.5–1.9 cm) medial to the lesser trochanter. The ascending branch runs caudally within fat tissue that divides the QF and OE at an average distance of 1.5 cm (range 0.7–2.3 cm) from the QF greater trochanter insertion. At the superior border of the QF, the MFCA continues as the deep branch posterior to the OE tendon at an average distance of 1.3 cm (range 0.6–1.9 cm) from the OE femoral insertion. The deep branch was noted to enter the capsule at an average distance of 0.3 cm (range 0–0.5 cm) from the distal border of the CT and 1.2 cm (range 0.6–1.9 cm) from the CT femoral insertion. Discussion and Conclusion. The ascending branch of the MFCA runs in the anterior surface of the QF at a distance of 1.5 cm from the femoral insertion. When the QF myotomy is performed, commonly 0.5–0.8 cm from the insertion to the femur, the vessel get disrupted or stays medial to the myotomy and can stretch/disrupt when the femur is dislocated and translated anteriorly. Tenotomies of the OE and CT should stay at least 1.5 cm from the femoral insertion to preserve the deep branch of the MFCA. This study provides unreported topographic anatomy of the ascending and deep branch of the MFCA, which can help develop an improved blood-preserving posterior approach for HRA


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 236 - 236
1 Mar 2013
Lazaro LE Klinger C Sculco PK Pardee NC Su E Kelly B Helfet DL Lorich DG
Full Access

Introduction. Precise knowledge of the Femoral Head (FH) arterial supply is critical to avoid FH avascular necrosis following open and arthroscopic intra-capsular surgical procedures about the hip. The Medial Femoral Circumflex Artery (MFCA) provides the primary FH vascular contribution. Distribution of vascular foramina at the Femoral Head-Neck Junction (FHNJ) has been reported previously using an imaginary clock face. However, no quantitative information exists on the precise Capsular Insertion (CI) and intra-capsular course of the MFCA Terminal Branches (TBs) supplying the FH. This study seeks to determine the precise anatomic location of the MFCA's TBs supplying the FH, in order to help avoid iatrogenic vascular damage during surgical intervention. Methods. In 14 fresh-frozen cadaveric hips (9 left and 5 right), we cannulated the MFCA and injected a polyurethane compound. Using a posterior approach, careful dissection of the MFCA allowed us to identify and document the extra- and intra-capsular course of the TBs penetrating the FHNJ and supplying the FH. An H-type capsulotomy provided joint access while preserving the intracapsular Retinaculum of Weitbrecht (RW), followed by circumferential capsulotomy at the acetabular margin exposing the FH. The dome of the FH was osteotomized 5 mm proximal to the Articular Border (AB) providing a flat surface for our 360° scale. Right-side equivalents were used for data processing. Results. Gross dissection revealed a constant single branch arising from the transverse MFCA penetrating the capsule at the level of the anterior-inferior neck at 177° (range 167–187°), then courses within the medial RW obliquely (elevated from the neck) to the posterior-inferior FHNJ (Figure 1). This vessel was found to have an average of 5 TBs (range 3–9) penetrating the inferior FHNJ 4 mm (range 1–7 mm) from the AB at 204° (range 145–244°; 14% . 10. /. 69. anterior; 86% . 59. /. 69. posterior). In 79% (. 11. /. 14. ) of specimens, an average of 1.5 branches (range 1–3) arising from the ascending MFCA entered the Femoral Capsular Attachment (FCA) at 244° (range 216–269°), running subsynovial through the neck, and terminating in 2 TBs (range 1–3) penetrating the inferior-posterior FHNJ 5 mm (range 3–9) from the AB at 254° (range 207–281°). The deep branch of the MFCA penetrated the FCA at 327° (range 310–335°) providing an average of 6 TBs (range 4–9) running subsynovial and within the lateral RW, finally penetrating the superior FHNJ 6 mm (range 4–9) from the AB at 339° (range 286–25°; 20%. 15/74. anterior; 80%. 59/74. posterior). Discussion and Conclusion. This study demonstrates that TBs of the MFCA penetrate the joint through the mid-substance of the capsule (from the transverse MFCA) or the FCA (from the ascending or deep MFCA). Once intra-capsular, these vessels course subsynovial or within the RW and terminate at the posterior FHNJ superiorly (from the deep MFCA) and inferiorly (from the ascending and transverse MFCA). Any surgical hip intervention should preserve the posterior FCA, and lateral and medial RW in order to preserve the FH vascular supply. These results illustrate a vascular danger zone that should be respected during surgery and can be easily interpreted with the commonly used clock face


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 168 - 168
1 Dec 2013
Sculco P Lazaro LE Birnbaum J Klinger C Dyke JP Helfet DL Lorich DG Su E
Full Access

Introduction:. A surgical hip dislocation provides circumferential access to the femoral head and is essential in the treatment pediatric and adult hip disease. Iatrogenic injury to the femoral head blood supply during a surgical may result in the osteonecrosis of the femoral head. In order to reduce vessel injury and incidence of AVN, the Greater Trochanteric Osteotomy (GTO) was developed and popularized by Ganz. The downside of this approach is the increased morbidity associated with the GTO including non-union in 8% and painful hardware requiring removal in 20% of patients. (reference) Recent studies performed at our institution have mapped the extra-osseous course of the medial femoral circumflex artery and provide surgical guidelines for a vessel preserving posterolateral approach. In this cadaveric model using Gadolinium enhanced MRI, we investigate whether standardized alterations in the postero-lateral surgical approach may reliably preserve femoral head vascularity during a posterior surgical hip dislocation. Methods:. In 8 cadaveric specimens the senior author (ES) performed a surgical hip dislocation through the posterolateral approach with surgical modifications designed to protect the superior and inferior retinacular arteries. In every specimen the same surgical alterations were made using a ruler: the Quadratus Femoris myotomy occurred 2.5 cm off its trochanteric insertion, the piriformis tenotomy occurred at its insertion and extended obliquely leaving a 2 cm cuff of conjoin tendon (inferior gemellus), and the Obturator Externus (OE) was myotomized 2 cm off its trochanteric insertion. (Figure 1) For the capsulotomy, the incision started on the posterior femoral neck directly beneath the cut obturator externus tendon and extending posteriorly to the acetabulum. Superior and inferior extensions of the capsulotomy ran parallel to the acetabular rim creating a T-shaped capsulotomy. After the surgical dislocation was complete, the medial femoral circumflex artery (MFCA) was cannulated and Gadolinium-enhanced MRI performed in order to assess intra-osseous femoral head perfusion and compared to the gadolinium femoral head perfusion of the contra-lateral hip as a non-operative control. Gross-dissection after polyurethane latex injection in the cannulated MFCA was performed to validate MRI findings and to assess for vessel integrity after the surgical dislocation. Results:. In 8 cadaveric specimens MRI quantification of femoral head perfusion was 94.3% and femoral head-neck junction perfusion was 93.5% compared to the non-operative control. (Figure 2) Gross dissection after latex injection into the MFCA demonstrated intact superior and inferior retinacular arteries in all 8 specimens. (Figure 3). Discussion and Conclusions:. In this study, perfusion to the femoral head and head-neck junction is preserved following posterior surgical dislocation through the postero-lateral approach. These preliminary findings suggest that specific surgical modifications can protect and reliably maintain vascularity to the femoral head after surgical hip dislocation. This approach may benefit hip resurfacing and potentially decease risk of femoral neck fracture secondary to osteonecrosis. In addition this may allow a vascular preserving surgical hip dislocation to be performed without the need for a GTO


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_7 | Pages 111 - 111
1 May 2016
Klinger C Dewar D Sculco P Lazaro L Ni A Thacher R Helfet D Lorich D
Full Access

Introduction. The vascular anatomy of the femoral head and neck has been previously reported, with the primary blood supply attributed to the deep branch of the Medial Femoral Circumflex Artery (MFCA). This understanding has led to development of improved techniques for surgical hip dislocation for multiple intra-capsular hip procedures including Hip Resurfacing Arthroplasty (HRA). However, there is a lack of information in the literature on quantitative analysis of the contributions of the Lateral Femoral Circumflex Artery (LFCA) to femoral head and neck. Additionally, there is a lack of detailed descriptions in the literature of the anatomic course of the LFCA from its origin to its terminal branches. Materials & Methods. Twelve fresh-frozen human pelvic cadaveric specimens were studied (mean age 54.3 years, range 28–69). One hip per specimen was randomly assigned as the experimental hip, with the contralateral used as a control. Bilateral vascular dissection was performed to cannulate the MFCA and LFCA. Specimens were assigned as either LFCA-experimental or MFCA-experimental. All specimens underwent a validated quantitative-MRI protocol: 2mm slice thickness with pre- and post- MRI contrast sequences (Gd-DTPA diluted with saline at 3:1). In the LFCA-experimental group 15ml of MRI contrast solution was injected into the LFCA cannula. In the MFCA-experimental group 15ml of contrast solution was injected into the MFCA cannula. On the control hip contrast solution was injected into both MFCA and LFCA cannulas, 15ml each (30ml total for the control hip). Following MRI, the MFCA and LFCA were injected with polyurethane compound mixed with barium sulfate (barium sulfate only present in either MFCA or LFCA on each hip). Once polymerization had occurred, hips underwent thin-slice CT scan to document the extra- and intra-capsular course of the LFCA and MFCA. Gross dissection was performed to visually assess all intra-capsular branches of both the MFCA and LFCA and assess for extravasation. Quantitative-MRI analysis was performed based on Region of Interest (ROI) assessment. Femoral heads were osteotomized at the level of the largest diameter proximal to the articular margin and perpendicular to the femoral neck, for placement of a 360° scale. Measurements using the 360° scale were recorded. For data processing, we used right-side equivalents and integrated our 360° data into the more commonly used imaginary clock face. Results. Quantitative analysis of contributions of the MFCA and LFCA are detailed (Table 1). Thin slice CT scan graphical analysis of the LFCA provided (Figure 1). Topographic 360° scale (and imaginary clock face) results are also detailed in a diagram (Figure 2). Discussion. This study provides the first comparative results for quantitative assessment of arterial contributions from both the MFCA and LFCA for the femoral head and neck. The MFCA is the dominant vessel for both the femoral head and neck, supplying 82% of the femoral head and 67% of the femoral neck. The LFCA plays its largest role in the inferoanterior femoral neck (with a 48% arterial contribution). This finding highlights the importance of protecting the LFCA in addition to the MFCA during intra-capsular hip procedures including Hip Resurfacing Arthroplasty