Advertisement for orthosearch.org.uk
Results 1 - 2 of 2
Results per page:
Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_12 | Pages 73 - 73
1 Dec 2022
Woolfrey M Bolton C Woolfrey K Warchuk D
Full Access

Despite total knee arthroplasty demonstrating high levels of success, 20% of patients report dissatisfaction with their result. Wellness Stasis Socks are embedded with a proprietary pattern of neuro-receptor activation points that have been proven to activate a precise neuro-response, as according to the pattern theory of haptic perception, which stimulates improvements in pain and function. Technologies that manipulate this sensory environment, such as textured insoles, have proven to be effective in improving gait patterns in patients with knee osteoarthritis. In regard to patients undergoing TKA using this new technology may prove beneficial as an adjunct to recovery as many patients suffer from further deficits to their proprioceptive system caused by ligamentous damage and alterations to mechanoreceptors during procedure. We hypothesized that the Wellness Stasis Socks are a safe, cost-effective and easily scalable strategy to support TKA patients through their recovery. Double-blinded, placebo-controlled randomized trial. Randomization using a computer-generated program . All study coordinators, healthcare personel and patients were blinded to patient groups. All surgical procedures were conducted by the same technique and orthopaedic surgeon. Intervention group: Wellness Stasis socks containing receptor point-activation technology. Control group: indentical appearing Wellness Stasis socks without receptor point-activation technology. Sock use during the waking hours . All additional post-operative protocols remained consistent between groups including same facility physiotherapy . Additional modalities (ice machines, soft-tissue massages, acupuncture) were prohibited. WOMAC questionnaire completed at baseline, 2 weeks, and 6 weeks to assess pain, stiffness and physical function. G. *. Power software to determine minimum sample of 50 in each group. No patients were lost to follow up and all followed study protocol. Data analysis using SPSS software. P-values, effect sizes, and confidence intervals are reported to assess clinical relevance of the finding. Physical status classifications were compared using t-test. Within-subject and between-subject differences in the mean WOMAC were analyzed by ANOVA. Cramer's V statistical analysis noted that other variables of Sex, BMI, ASA classification and Age were not statistically different between the control and intervention groups. No statistical difference between groups in Preop Womac scores. The data showed a consistent improvement in Womac scores for pain and stiffness at 2 weeks post op in the interventional group over the control group. The womac scores assessing physical function showed a consistent improvement at both 2 and 6 weeks post op in the intervention group compared to the control group. There were no complications in either group associated the sock use. The intervention proved to be a low cost and safe additional intervention post operatively from TKA to help patients improve with regard to pain, stiffness and physical function. This study suggests this modality can be added to the list of other commonly used post op interventions such as cryocuffs, physiotherapy, and relaxation techniques as safe post op interventions to help patients improve post op TKA and can act as an adjunct in providing non narcotic pain control


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_6 | Pages 100 - 100
1 Mar 2017
Wimmer M Simon J Kawecki R Della Valle C
Full Access

Introduction. Preservation of the anterior cruciate ligament (ACL), along with the posterior cruciate ligament, is believed to improve functional outcomes in total knee replacement (TKR). The purpose of this study was to examine gait differences and muscle activation levels between ACL sacrificing (ACL-S) and bicruciate retaining (BCR) TKR subjects during level walking, downhill walking, and stair climbing. Methods. Ten ACL-S (Vanguard CR) (69±8 yrs, 28.7±4.7 kg/m2) and eleven BCR (Vanguard XP, Zimmer-Biomet) (63±11 yrs, 31.0±7.6 kg/m2) subjects participated in this IRB approved study. Except for the condition of the ACL, both TKR designs were similar. Subjects were tested 8–14 months post-op in a motion analysis lab using a point cluster marker set and surface electrodes applied to the Vastus Medialis Oblique (VMO), Rectus Femoris (RF), Biceps Femoris (BF) and Semitendinosus (ST). 3D motion and force data and electromyography (EMG) data were collected simultaneously. Subjects were instructed to walk at a comfortable walking speed across a walkway, down a 12.5% downhill slope, and up a staircase. Five trials per activity were collected. Knee kinematics and kinetics were analyzed using BioMove (Stanford, Stanford, CA). The EMG dataset underwent full-wave rectification and was smoothed using a 300ms RMS window. Gait cycle was time normalized to 100%; relative voluntary contraction (RVC) was calculated by dividing the average activation during downhill walking by the maximum EMG value during level walking and multiplying by 100%. Results. There were no significant kinematic or kinetic differences between implant groups for level walking (p≥0.19). Both groups walked at 1.1 m/s on average during level and approximately 0.1 m/s slower during downhill walking, with no differences in speed (p= 0.91 and 0.77, respectively). For both ACL-S and BCR groups, gait changes from level to downhill walking were similar. For downhill walking, ACL-S subjects were significantly more variable (p<0.001) over the gait cycle for all measured kinematics and kinetics. During both downhill walking and stair climbing, the ACL-S group showed an external peak abduction moment (Fig. 1) significantly greater than that of the BCR group (p=0.05, 0.01). Also during stair climbing, ACL-S subjects showed trending higher peak knee adduction moments (p=0.14) and a more pronounced internal/external rotation pattern (Fig. 2) than BCR subjects. Since no peak kinematic/kinetic differences between groups during level walking exist, the mean maximum muscle activation from level walking was used for RVC normalization for other activities. On average, BCR subjects had lower maximum RVCs during downhill walking than the ACL-S subjects. Effect sizes were large for RF (d=0.94), ST (d=0.88), and VMO (d=1.21), the latter being borderline significant (p=0.05). Discussion. Previous studies on the natural knee have established that the ACL contains mechanoreceptors that improve stability of the knee joint. In this study, BCR subjects show less variable gait measures than subjects with traditional posterior cruciate retaining (ACL-S) TKR, possibly indicating more controlled contact kinematics. In addition, EMG results suggest lower muscle co-contraction during downhill walking, also implying greater knee stability in the BCR group. These results are preliminary and more subjects are needed for definite conclusions