Aim. Staphylococcus epidermidis (S. epidermidis) is one of the main pathogens responsible for bone and joint infections especially those involving prosthetic materials (PJI). Although less virulent than S. aureus, S. epidermidis is involved in chronic infections notably due to its ability to form biofilm. Moreover, it is frequently multiresistant to antibiotics. In this context, the development of additional or alternative antibacterial therapies targeting the biofilm is a priority. Method. The aim of this study was to evaluate in vitro the activity of phage lysin exebacase (CF-301) against biofilms formed by 19 S. epidermidis clinical strains responsible for PJI. We determined the remaining viable bacteria inside the biofilm (counting after serial dilution and plating) and the biomass (bacteria and extracellular matrix, using crystal violet staining) after 24h of exposition to exebacase at different concentrations, alone (0.05; 0.5; 5; 50 and 150 mg/L) or in combination (5, 50 and 150 mg/L) with antibiotics commonly used to treat multi-resistant S. epidermidis PJI (rifampin (1 mg/L), vancomycin (10mg/L) and daptomycin (10mg/L)). In this study, synergy was defined as a significantly higher effect of the association in comparison to the sum of the effect of each molecule. Results. Exebacase showed a dose-dependent reduction of biomass, ranging from 11 % at 0.5 mg/L to 66 % at 150 mg/L. Exebacase showed a significant bactericidal activity at 50 and 150 mg/l, with a mean decrease of the inoculum of 0.94 and 1.7 log, respectively. In addition, synergistic effects were observed in association with i) rifampin (1 mg/L) showing a mean decrease up to 84% of the biomass and 3.5 log CFU at 150 mg/L of exebacase, ii) vancomycin (10 mg/L) showing a mean decrease up to 81% of the biomass and 2.82 log CFU at 150 mg/L of exebacase, iii) and daptomycin (10 mg/L) showing a mean decrease up to 85% of the biomass and 3.1 log CFU at 150 mg/L of exebacase. Conclusions. Exebacase showed, in vitro, synergistic activity with antibiotics against S. epidermidis biofilms. It is a promising adjuvant therapy to rifampin, vancomycin and daptomycin in the context of PJI. Further studies are needed, in vitro to understand the
A common step to revision surgery for infected total knee replacement (TKR) is a thorough debridement. Whilst surgical and mechanical debridement are established as the gold standard, we investigate a novel adjuvant chemical debridement using an Acetic Acid (AA) soak that seeks to create a hostile environment for organisms, further degradation of biofilm and death of the bacteria. We report the first orthopaedic in vivo series using AA soak as an intra-operative chemical debridement agent for treating infected TKR's. We also investigate the in vitro efficacy of AA against bacteria isolated from infected TKR's. A prospective single surgeon consecutive series of patients with infected TKR were treated according to a standard debridement protocol. Patients in the series received sequential debridement of surgical, mechanical and finally chemical debridement with a 10 minute 3% AA soak. In parallel, we isolated, cultured and identified bacteria from infected TKR's and assessed the in vitro efficacy of AA. Susceptibility testing was performed with AA solutions of different concentrations as well as with a control of a gentamicin sulphate disc. The effect of AA on the pH of tryptone soya was also monitored in an attempt to understand its potential
Staphylococcus aureus is responsible for 60–70% infections of surgical implants and prostheses in Orthopaedic surgery, with cumulative treatment costs for all prosthetic joint infections estimated to be ∼ $1 billion per annum (UK and North America). Its ability to develop resistance or tolerance to a diverse range of antimicrobial compounds, threatens to halt routine elective implant surgery. One strategy to overcome this problem is to look beyond traditional antimicrobial drug therapies and investigate other treatment modalities. Biophysical modalities, such as ultrasound, are poorly explored, but preliminary work has shown potential benefit, especially when combined with existing antibiotics. Low intensity pulsed ultrasound is already licensed for clinical use in fracture management and thus could be translated quickly into a clinical treatment. Using a methicillin-sensitive S. aureus reference strain and the dissolvable bead assay, biofilms were challenged with gentamicin +/− low-intensity ultrasound (1.5MHz, 30mW/cm2, pulse duration 200µs/1KHz) for 180 minutes and 20 minutes, respectively. The primary outcome measures were colony-forming units/mL (CFU/mL) and the minimum biofilm eradication concentration (MBEC) of gentamicin. The mean number of S. aureus within control biofilms was 1.04 × 109 CFU/mL. Assessment of cellular metabolism was conducted using a liquid-chromatography-mass spectrometry, as well as a triphenyltetrazolium chloride assay coupled with spectrophotometry. There was no clinically or statistically significant (p=0.531) reduction in viable S. aureus following ultrasound therapy alone. The MBEC of gentamicin for this S. aureus strain was 256 mg/L. The MBEC of gentamicin with the addition of ultrasound was reduced to 64mg/L. Metabolic activity of biofilm-associated S. aureus was increased by 25% following ultrasound therapy (p < 0 .0001), with identification of key biosynthetic pathways activated by non-lethal dispersal. Low intensity pulsed ultrasound was associated with a four-fold reduction in the effective biofilm eradication concentration of gentamicin, bringing the MBEC of gentamicin to within clinically achievable concentrations. The
Bone regeneration includes a well-orchestrated series of biological events of bone induction and conduction. Among them, the Wnt/β-catenin signaling pathway is critical for bone regeneration. Being involved in several developmental processes, Wnt/β-catenin signaling must be safely targeted. There are currently only few specific therapeutic agents which are FDA-approved and already entered clinical trials. A published work has shown that Tideglusib, a selective and irreversible small molecule non-ATP-competitive glycogen synthase kinase 3-β(GSK-3β) inhibitor currently in trial for Alzheimer's patients, can promote tooth growth and repair cavities. [1]Despite some differences, they are some similarities between bone and tooth formation and we hypothesise that this new drug could represent a new avenue to stimulate bone healing. In this work, we locally delivered Tideglusib (GSK3β inhibitor) in the repair of femoral cortical window defects and investigated bone regeneration. A biodegradable FDA-approved collagen sponge was soaked in GSK-3βinhibitor solution or vehicle only (DMSO) and was implanted in 1 × 2 mm unicortical defects created in femora of 35 adult wild-type male mice. Bone defect repair on control and experimental (GSK-3βinhibitor) groups was assessed after 1 week (n=22), 2 weeks (n=24) and 4 weeks (n=24) with microCT and histological analysis foralkaline phosphatase (ALP, osteoblast activity), tartrate resistant acid phosphatase (TRAP, osteoclasts), and immunohistochemistry to confirm the activation of the Wnt/β-catenin pathway. Our results showed that Tideglusib significantly enhanced cortical bone bridging (20.6 ±2.3) when compared with the control (12.7 ±1.9, p=0.001). Activity of GSK-3β was effectively downregulated at day 7 and 14 resulting in a higher accumulation of active β-catenin at day 14 in experimental group (2.5±0.3) compared to the control (1.1±0.2, p=0.03). Furthermore, the onset of ALP activity appears earlier in the experimental group (day 14, 1.79±0.28), a level of activity never reached at any end-point by the control defects. At 4 weeks treatment, we observed a significant drop in ALP in the experimental group (0.47±0.05) compared to the control (1.01±0.19, p=0.02) and a decrease in osteoclast (experimental=1.32±0.36, control=2.23±0.67, p=0.04). Local downregulation of GSK-3β by tideglusib during bone defect repair resulted in significant increase in amount of new bone formation. The early upregulation of osteoblast activity is one explanation of bone healing augmentation. This is likely the effect of upregulation of β-catenin following pharmaceutical inhibition of GSK-3β since β-catenin activation is known to positively regulate osteoblasts, once committed to the osteoblast lineage. As a GSK-3β inhibitor, Tideglusib demonstrates a different
Aim. Biofilm-related infections represent a recurrent problem in the orthopaedic setting. In recent years, great interest was directed towards the identification of novel molecules capable to interfere with pathogens adhesion and biofilm formation on implant surfaces. In this study, two stable forms of α-tocopherol, the hydrophobic acetate ester and the water-soluble phosphate ester, were tested in vitro as coating for titanium prostheses. Method. Antimicrobial activity against microorganisms responsible of prosthetic and joints infections was assessed by broth microdilution method. In addition, α-tocopherol esters were evaluated for both their ability to hamper bacterial adhesion and biofilm formation on sandblasted titanium surfaces. Results. Only α-tocopheryl phosphate displayed antimicrobial activity against the tested strains. Both esters were able to significantly interfere with bacterial adhesion and to prevent biofilm formation, especially by Staphylococcus aureus and Staphylococcus epidermidis. The activity of α-tocopheryl phosphate was greater than that of α-tocopheryl acetate. Alterations at membrane levels have been reported in literature1 and may be likely responsible for the interference on bacterial adhesion and biofilm formation shown by α-tocopherol esters. Conclusions. Although further studies are needed to better investigate the
Computer assisted orthopaedic surgery (CAOS) is an emerging and expanding filed. There are some old classification systems that are too comprehensive to cover all new CAOS tools and hybrid devises that are currently present and others that are expected to appear in the near future. Based on our experience and on the literature review, we grouped CAOS devises on the basis of their functionality and clinical use into 6 categories, which are then sub-grouped on technical basis. In future, new devices can be added under new categories or subcategories. This grouping scheme is meant to provide a simple guide on orthopaedic systems rather than a comprehensive classification for all computer assisted systems in surgical practice. For example, the number and diversity of tasks of surgical robots is enormous, up to 159 surgical robots with different mechanisms and functions reported in the literature. These can be classified according to their tasks,
Daptomycin has a unique
Background. Shockwave therapy has been shown to induce osteoneogenesis in animal models. The
Ten percent of fractures end in delayed or non-union. NSAIDs have been linked to an inhibitory action on fracture repair for three decades yet the
Implant-associated infection is a major source
of morbidity in orthopaedic surgery. There has been extensive research
into the development of materials that prevent biofilm formation,
and hence, reduce the risk of infection. Silver nanoparticle technology
is receiving much interest in the field of orthopaedics for its
antimicrobial properties, and the results of studies to date are
encouraging. Antimicrobial effects have been seen when silver nanoparticles are
used in trauma implants, tumour prostheses, bone cement, and also
when combined with hydroxyapatite coatings. Although there are promising
results with Cite this article: