Military personnel operating on high speed marine craft are exposed to Whole-Body Vibration (WBV). Additionally planing craft operate at speeds with minimal contact of the hull with warer making the crew vulnerable to mechanical shock. An association between Low Back Pain (LBP) and exposure to WBV has been extensively reported in civilian literature. LBP is reported by military personnel operating on planing craft leading to downgrades and potential discharge. There is a clear need to understand the impact prolonged exposure has on our population operating these craft. We performed a bibliographical search of the PubMed database for records using a combination of keywords. Abstracts were screened for relevance and references cited in retrieved papers reviewed. There is no consensus in the literature on the potentially pivotal pathological process behind the association. Evidence from professional driving suggests current safe operating exposure levels require review to protect against long-term damage however with little evidence concerning the unique environment in which boats crews operate, the parity of these environments require investigation to allow direct comparison. Due to the prevalence of LBP in this population a need exists to establish the pathological process and add to the evidence base driving safe operating exposure levels.
Abstract. Source of Study: London, United Kingdom. This intervention study was conducted to assess two developing protocols for quadriceps and hamstring rehabilitation: Blood Flow Restriction (BFR) and Neuromuscular Electrical Stimulation Training (NMES). BFR involves the application of an external compression cuff to the proximal thigh. In NMES training a portable electrical stimulation unit is connected to the limb via 4 electrodes. In both training modalities, following device application, a standardised set of exercises were performed by all participants. BFR and NMES have been developed to assist with rehabilitation following lower limb trauma and surgery. They offer an alternative for individuals who are unable to tolerate the high
Low back pain is the single most common cause for disability in individuals aged 45 years or younger, it carries tremendous weight in socioeconomic considerations. Degenerative aging of the structural components of the spine can be associated with genetic aspects, lifetime of tissue exposure to
Introduction. The low-contact stress (LCS) knee prosthesis is a mobile-bearing design with modifications to the tibial component that allow for meniscal-bearing (MB) or rotating-platform (RP). The MB design had nonconstrained anteroposterior and rotational movement, and the RP design has only nonconstrained rotational movement. The anterior soft tissues, including patellar tendon (PT), prevent anterior dislocation of the MB. The PT may consistently be exposed to overstressing. Therefore, we hypothesized that the PT thickness and width in MB prosthesis revealed more morphological changes than those of RP prosthesis due to degeneration of the PT induced by much
[Introduction]. It is said that the
Anterior cruciate ligament (ACL) reconstruction is the current standard of care for ACL tears. However, the results are not consistently successful, autografts or allografts have certain disadvantages, and synthetic grafts have had poor clinical results. The aim of this study was to determine the efficacy of tissue engineering decellularized tibialis tendons by recellularization and culture in a dynamic tissue bioreactor. To determine if recellularization of decellularized tendons combined with mechanical stimulation in a bioreactor could replicate the mechanical properties of the native ACL and be successfully used for ACL reconstruction in vivo. Porcine tibialis tendons were decellularized and then recellularized with human adult bone marrow-derived stem cells. Tendons were cultured in a tissue bioreactor that provided biaxial cyclic loading for up to 7 days. To reproduce
The amount of bone loss due to implant failure, loosening, or osteolysis can vary greatly and can have a major impact on reconstructive options during revision total knee arthroplasty (TKA). Massive bone loss can threaten ligamentous attachments in the vicinity of the knee and may require use of components with additional constraint to compensate for associated ligamentous instability. Classification of bone defects can be helpful in predicting the complexity of the reconstruction required and in facilitating preoperative planning and implant selection. One very helpful classification of bone loss associated with TKA is the Anderson Orthopaedic Research Institute (AORI) Bone Defect Classification System as it provides the means to compare the location and extent of femoral and tibial bone loss encountered during revision surgery. In general, the higher grade defects (Type IIb or III) on both the femoral and tibial sides are more likely to require stemmed components, and may require the use of either structural graft or large augments to restore support for currently available modular revision components. Custom prostheses were previously utilised for massive defects of this sort, but more recently have been supplanted by revision TKA component systems with or without special metal augments or structural allograft. Options for bone defect management are: 1) Fill with cement; 2) Fill with cement supplemented by screws or K-wires; 3) Morselised bone grafting (for smaller, especially contained cavitary defects); 4) Small segment structural bone graft; 5) Impaction grafting; 6) Porous metal cones or sleeves 7) Massive structural allograft-prosthetic composites; 8) Custom implants. Of these, use of uncemented highly porous metal metaphyseal cones in combination with an initial cemented or partially cemented implant has been shown to provide versatile and highly durable results for a range of bone defects including those previously requiring structural bone graft. The hybrid fixation combination of both cement and cementless fixation of an individual tibial or femoral component has emerged as a frequent and often preferred technique. Initial secure and motionless interfaces are provided by the cemented portions of the construct, while subsequent bone ingrowth to the cementless porous metal portions is the key to long term stable fixation. As bone grows into the porous portions there is off loading and protection of the cemented interfaces from
Introduction. Wear and survival of total joint replacements do not depend on the duration of the implant in situ, but rather on the amount of its use, i.e. the patient's activity level [1]. With this in mind, the present study was driven by two questions: (1) How does total knee replacement (TKR) respond to the simulation of daily highly demanding activities? (2) How does implant size affect wear response of total knee replacement (TKR)?. Materials & Methods. Two sets of the same total knee prosthesis (TKP), different in size (#2 and #6), equal in design, were tested on a three-plus-one knee joint simulator for two million cycles using a highly demanding daily load waveform [2], replicating a stair-climbing movement. The results were compared with two sets of TKP previously tested with the ISO level walking task. Gravimetric and micro-Raman spectroscopic analyses were carried out on the polyethylene inserts. Visual comparison with in vivo explants was carried out and digital microscopy was used to characterize the superficial structure of all the TKPs and explanted components. Results. The average volumetric loss of the UHMWPE inserts tested for 2Mc under ISO standard level walking were 21.36 ±1 mm3 and 41 ±2 mm3 for the size #2 and size #6, respectively. The average volumetric mass loss after two million cycles for the size #2 under the stair climbing simulation was 44 ±6 mm3. Microscope examinations showed some deep scratches along the flexion/extension movements for all the components. A decrease in crystallinity, induced by
In addition to
Introduction. Acute poliomyelitis is a very rare disease in western countries, however the remnant of the pathology can be find among the adult patients. In poliomyelitis, sensation is normal and patients may suffer from painful etiologies. Total knee arthroplasty (TKA) with non-hinged or semi hinged prosthesis systems may be a good options to relief the pain in poliomyelitic patients, however the knee remains unstable. Using the hinged system implant may be the good option to resolve the late. Although the main concern in case of hinged implant usage is the
Introduction. Modern hip replacements all have encapsulated the design concept of proximal modularity. The factors contributing to the increased wear and corrosion at the taper junction are trunnion geometry, surface characteristics, head size, impaction forces, and material coupling. This study maps the inferior and superior region of the trunnion and bore to provide a visual identification of the corrosion severity. The corrosion/wear generated inferiorly and superiorly at the bore and trunnion will be quantified to understand how corrosion is affected by
Epidemiological studies have shown that accumulated
Introduction. Total knee arthroplasty (TKA) implant systems offer a range of sizes for orthopaedic surgeons to best mimic the patient's anatomy and restore joint function. From a biomechanical perspective, the challenge on the TKA implants is affected by two factors: design geometry and in vivo load. Larger geometry typically means more robust mechanical structure, while higher in vivo load means greater burden on the artificial joint. For an implant system, prosthesis geometry is largely correlated with implant size, while in vivo load is affected by the patient's demographics such as weight and height. Understanding the relationships between implant size and patients' demographics can provide useful information for new prosthesis design, implant test planning, and clinical data interpretation. Utilizing a manufacturer supported clinical database, this study examined the relationships between TKA patient's body weight, height, and body mass index (BMI) and the received implant size of a well-established implant system. Methods. A multi-site clinical database operated by Exactech, Inc. (Gainesville, FL, USA) was utilized for this study. The database contains patient information of Optetrak TKA implant recipients from over 30 physicians in US, UK, and Colombia since 1995. Nine implant sizes (0, 1, 2, 2.5, 3, 3.5, 4, 5 and 6) are seen in the database, while size 0 was excluded due to very low usage. Taking primary TKA only, a total of 2,713 cases were examined for patient's body weight, height, BMI, and their relationships with the implant size. Results. Both patient's weight and height strongly correlate with implant size (R. 2. »0.95 for both parameters with a linear regression). On average, the increase of one implant size corresponds to an increase of 7.4 kg in patient's weight and 7.0 cm in patient's height (Figure 1). However, there is almost no dependency between patient's BMI and implant size (R. 2. <0.05), and the regression line is almost flat (k=-0.08) (Figure 1). Discussion. Based on the Exactech database, this study revealed that TKA patients' weight and height increase close-to-linearly with implant size, but BMI stays fairly constant. These relationships are not all intuitive mathematically, and are likely simplified representations of higher order functions within the particular variable ranges. The most interesting finding was the independence of BMI on implant size, which provides a favorable validation of the geometry design and size selection of the Optetrak implant system. BMI (kg/m. 2. ) has the same unit dimension as stress (N/m. 2. ) excluding the constant g (9.8 N/kg). Since implant geometry is generally proportional to patient height, and joint force is generally proportional to patient weight, the
INTRODUCTION:. Proximally coated femoral stems have been designed to address the shortcomings of fully coated femoral stems including proximal femoral stress shielding. The design improvements leading to more optimized proximal femoral loading condition in the “Neck preserving stems” have increased the popularity of such implants (e.g., Minihip). Neck preserving stems depict better biological outcomes compared to more traditional stems . 1. by utilizing more natural
Introduction. Adverse Local Tissue Reactions (ALTR) have been reported in association with both wear and corrosion. Tissue reactions have been reported in association with corrosion at CoCr head-CoCr neck, CoCr head-TiAl6V4 neck, and CoCr modular neck on beta-titanium (TMZF) stem junctions. The current abstract reports on 3 cases of ALTR in association with CoCr modular necks on convention titanium (TiAl6V4) stem junctions. Case 1. A 67 year old male (87 kg, 1.73 m, BMI 29.1) presented with new onset hip irritation 11 months after surgery. Radiographs show no abnormalities. Further investigation revealed the following: ESR = 95, CRP = 5, Cr level = 1.0, Co level = 4.1, leukocyte transformation testing = highly reactive to nickel. Hip aspiration was culture negative with 11,250 wbc. Metal artifact reduction MR showed cystic local reaction in the region of the greater trochanter. Case 2. A 52 year old male (89 kg, 1.83 m, BMI 26.5) presented with new onset hip irritation 30 months after surgery. Radiographs show no abnormalities. Further investigation revealed the following: ESR = 7, CRP = 5.4, Cr level = 2.1, Co level = 4.8, leukocyte transformation testing = reactive to nickel. Hip aspiration was culture negative with 3995 wbc. Metal artifact reduction MR showed cystic local reaction in the region of the iliopsoas. Case 3. A 52 year old male (104 kg, 1.85 m, BMI 30.1) presented with new onset hip irritation 26 months after surgery. Radiographs show no abnormalities. Further investigation revealed the following: ESR = 33, CRP = 34.9, Cr level = 1.0, Co level = 3.7, leukocyte transformation testing = no reactivity to any of the biomaterials. Hip aspiration was culture negative with 3,780 wbc. Metal artifact reduction MR showed cystic local reaction in the region of the iliopsoas. Discussion. All three of these patients are scheduled for revision surgery. All three had ceramic-ceramic bearings. We have experience with 1029 ceramic-ceramic THA with fixed neck conventional titanium and modular titanium neck implants with minimum 2 yr f/u and have never diagnosed an adverse reaction in any of these patients. It is possible that corrosion at the CoCr neck on TiAl6V4 stem junction is the root cause of these reactions. Although the incidence of diagnosed reactions is roughly 1%, it appears that the use of CoCr at any junction under significant
Introduction. Malalignment of lower limb is a common feature in patients with osteoarthritis (OA). This, either cause or effect of OA, is known to alter the normal anatomy of knee and affects progression of wear and tear in
Bone fixation plates are routinely used in corrective and reconstructive interventions. Design of such implants must take into consideration not only good surface fit, but also reduced intra-operative bending and twisting of the implant itself. This process increases
Introduction:. The
Limb-lengthening nails have largely replaced external fixation in limb-lengthening and reconstructive surgery. However, the adverse events and high prevalence of radiological changes recently noted with the STRYDE lengthening nail have raised concerns about the use of internal lengthening nails. The aim of this study was to compare the prevalence of radiological bone abnormalities between STRYDE, PRECICE, and FITBONE nails prior to nail removal. This was a retrospective case series from three centres. Patients were included if they had either of the three limb-lengthening nails (STYDE, PRECICE, or FITBONE) removed. Standard orthogonal radiographs immediately prior to nail removal were examined for bone abnormalities at the junction of the telescoping nail parts.Aims
Methods
Construction of a functional skeleton is accomplished
through co-ordination of the developmental processes of chondrogenesis,
osteogenesis, and synovial joint formation. Infants whose movement Cite this article: