As arthroplasty demand grows worldwide, the need for a novel cost-effective treatment option for articular cartilage (AC) defects tailored to individual patients has never been greater. 3D bioprinting can deposit patient cells and other biomaterials in user-defined patterns to build tissue constructs from the “bottom-up,” potentially offering a new treatment for AC defects. Novel composite bioinks were created by mixing different ratios of methacrylated alginate (AlgMA) with methacrylated gelatin (GelMA) and collagen. Chondrocytes and mesenchymal stem cells (MSCs) were then encapsulated in the bioinks and 3D bioprinted using a custom-built extrusion bioprinter. UV and double-ionic (BaCl2 and CaCl2) crosslinking was deployed following bioprinting to strengthen bioink stability in culture. Chondrocyte and MSC spheroids were also bioprinted to accelerate cell growth and development of ECM in bioprinted constructs. Excellent viability of chondrocytes and MSCs was seen following bioprinting (>95%) and maintained in culture, with accelerated cell growth seen with inclusion of cell spheroids in bioinks (p<0.05). Bioprinted 10mm diameter constructs maintained shape in culture over 28 days, whilst construct degradation rates and
Introduction. Cobalt chrome on polyethylene remains a widely used bearing combination in total joint replacement. However wear induced osteolysis, bulk material property degradation of highly cross-linked polyethylene (HXLPE) [1], and oxidation after implantation (thought to be as a result of lipid absorption or cyclic loading [2]) remains a concern. ECIMA is a cold-irradiated, mechanically annealed, vitamin E blended next generation HXLPE developed to maintain
Aims. The aim of this study was to describe implant and patient-reported outcome in patients with a unilateral transfemoral amputation (TFA) treated with a bone-anchored, transcutaneous prosthesis. Methods. In this cohort study, all patients with a unilateral TFA treated with the Osseointegrated Prostheses for the Rehabilitation of Amputees (OPRA) implant system in Sahlgrenska University Hospital, Gothenburg, Sweden, between January 1999 and December 2017 were included. The cohort comprised 111 patients (78 male (70%)), with a mean age 45 years (17 to 70). The main reason for amputation was trauma in 75 (68%) and tumours in 23 (21%). Patients answered the Questionnaire for Persons with Transfemoral Amputation (Q-TFA) before treatment and at two, five, seven, ten, and 15 years’ follow-up. A prosthetic activity grade was assigned to each patient at each timepoint. All mechanical complications, defined as fracture, bending, or wear to any part of the implant system resulting in removal or change, were recorded. Results. The Q-TFA scores at two, five, seven, and ten years showed significantly more prosthetic use, better mobility, fewer problems, and an improved global situation, compared with baseline. The survival rate of the osseointegrated implant part (the fixture) was 89% and 72% after seven and 15 years, respectively. A total of 61 patients (55%) had mechanical complications (mean 3.3 (SD 5.76)), resulting in exchange of the percutaneous implant parts. There was a positive relationship between a higher activity grade and the number of mechanical complications. Conclusion. Compared with before treatment, the patient-reported outcome was significantly better and remained so over time. Although osseointegration and the ability to transfer loads over a 15-year period have been demonstrated, a large number of mechanical failures in the external implant parts were found. Since these were related to higher activity, restrictions in activity and improvements to the
Extracorporeal irradiation and re-implantation of a bone segment is a technique employed in bone sarcoma surgery for limb salvage in the setting of reasonable bone stock. There is neither consensus nor rationale given for the dosage of irradiation used in previous studies, with values of up to 300Gy applied. We investigated the influence of extracorporeal irradiation on the elastic and viscoelastic properties of bone. Bone specimens were extracted from mature cattle and subdivided into thirteen groups; twelve groups exposed to increasing levels of irradiation and a control group. The specimens, once irradiated, underwent mechanical testing in saline at 37°C.
The previous bioabsorbable plates have had several issues with regard to clinical usage for fractures. The aims of this study were to demonstrate the clinical results of novel bioabsorbable plates made of hydroxyapatite/poly-L-lactide and titanium plates for metacarpal fractures and to compare
The ratio of the incidence of trochanteric to cervical fractures increased with age in the elderly female population, but the reason for this fact remain unclear. The purposes of this study were to investigate whether or not there are specificities of the local distribution of
Despite limited clinical scientific backing, an additional trochanteric stabilizing plate (TSP) has been advocated when treating unstable trochanteric fractures with a sliding hip screw (SHS). We aimed to explore whether the TSP would result in less post operative fracture motion, compared to SHS alone. Overall, 31 patients with AO/OTA 31-A2 trochanteric fractures were randomized to either a SHS alone or a SHS with an additional TSP. To compare postoperative fracture motion, radiostereometric analysis (RSA) was performed before and after weightbearing, and then at four, eight, 12, 26, and 52 weeks. With the “after weightbearing” images as baseline, we calculated translations and rotations, including shortening and medialization of the femoral shaft.Aims
Methods
Engineered bone tissue to recreate the continuity of damaged skeletal segments is one of the field of interest of tissue engineering. Trabecular titanium has very good
Recent findings about UHMWPE oxidation from in vivo stresses lead to the need of a better understanding of which anti-oxidant additivation method is the best option for the use in orthopaedic field. A GUR 1050 crosslinked Vitamin E - blended UHMWPE has been investigated, to provide an accurate outline of its properties. DSC and FTIR measurements, together with ageing and tensile tests were performed on compression moulded blocks, as well as biocompatibility tests, including implantation on rabbits. Moreover, wear simulations on finished components (Delta acetabular liners) have been completed. All the test procedures have been repeated for a reference material, a GUR 1050 crosslinked and remelted standard UHMWPE (commercial name UHMWPE X-Lima), and the outcomes have been compared to the crosslinked Vitamin E - blended UHMWPE ones. On the additivated UHMWPE, we found a ultimate tensile strength of 43 MPa, a yield strength value of 25 MPa, and an elongation to breakage equal to 320%. The degree of cristallinity was 45 ± 2%, and no signal of creation of oxidation products was detected up to 2000 h of permanence in oxidant ambient after the ageing test. The reference material showed comparable mechanical resistance values (∗ = 40 MPa, y = 20 MPa, 350% elongation), a cristallinity of 46 ± 2%, and the creation of oxidation products starting from 700 h in oxidant ambient. The biocompatibility tests indicate that the additivated material is biocompatible, as the reference X-Lima UHMWPE. Wear tests gave a wear rate of 5,09 mg/million cycles against 6,13 mg/million cycles of the reference material, and no sign of run in wear rate. Our results indicate that there is no change in
Introduction. In knee arthroplasty a ceramic component has several advantages: first, there is no ion release implying a risk for potential allergies. Second, the hardness of the material leads to a scratch resistance which ultimately reduces PE wear over time. In the past, ceramic components in knee applications were limited in the variety of design possibilities due to necessary thickness of the component resulting from the associated fracture risk of ceramics. By the development of an alumina matrix composite material with increased
Introduction. The pathophysiology of high failure rates following rotator cuff tendon repairs, particularly massive tears, is not fully understood. Collagen structural changes have been shown to alter tendon thermal and
Introduction. Osteoporosis (OP), osteoarthrosis (OA), and rheumatoid arthritis (RA) are the most common age-related degenerative bone diseases, and major public health problems in terms of enormous amount of economic cost. RA is considered as a major cause of secondary osteoporosis. At late stage, OP often leads to skeletal fractures, and OA and RA result in severe joint disability. Over the last a few decades, much significant research on the properties has been carried out on these diseases, however, a detailed comparison of the microarchitecture of cancellous bones of these diseases is not available. In this study, we investigated three-dimensional (3-D) microarchitectural properties of OP, OA and RA cancellous bone. We hypothesized that there were significant differences in microarchitecture among OP, OA and RA bone tissues that might lead to different bone quality. Materials and Method. Twenty OP, fifty OA, and twelve RA femur heads were harvested from patients undergone total hip replacement surgery. Cubic cancellous bone samples (8∗8∗8 mm3) were prepared and scanned with a high resolution microtomographic system (vivaCT 40, Scanco Medical AG., Brüttisellen, Switzerland). Then micro-CT images were segmented using individual thresholds to obtain accurate 3-D data sets. Detailed microarchitectural properties were evaluated based on novel unbiased, model-free 3-D methods. For statistical analysis, one-way ANOVA was used, and a p<0.05 was considered significant. Results. Significant differences in the microarchitecture of cancellous bone were observed among the OP, OA and RA groups. Compared with the other groups, OP cancellous bone had lowest density, thinner, typical rod-like structure and less connectivity (all p<0.01). Interestingly, there were no significant differences in the microarchitectural properties measured between the OA and RA cancellous bones. Both OA and RA cancellous bones had significant higher bone volume fraction and were thicker, typical plate-like structure compared with the OP group (all p<0.01), even though there was clearly bone erosion observed in RA cancellous bone. Discussion. Quantification of the alterations in bone properties and quality will help to gain more insights into the pathogenesis of degenerative bone diseases and to target and develop novel approaches for the intervention and treatment, and for the design, fixation and durability of total joint prosthesis. Our study demonstrated that there were significant differences in the microarchitecture of the OP, OA and RA femur head cancellous bone. The OA and RA cancellous bone had similar bone density and microarchitecture despite apparent bone erosion in the RA cancellous bone. These results from femur head did not support the traditional notion that RA and OP had similar low bone density. Thus, whether femur head bone tissues from these diseases have similar bone collagen, mineral and
Introduction. In total hip arthroplasty ceramic on ceramic bearing couples are used more and more frequently and on a wordwide basis. The main reason of this choice is reduction of wear debris and osteolysis. The tribological properties and the mechanical behaviour of the implanted ceramic must remain the same throughout the patient's life. The aim of this study was to evaluate the resistance of Alumina Matrix Composite to environmental degradation. Material and method. The alumina matrix composite or BIOLOX ® delta is manufactured in Germany by CeramTec. It is made up of 80 vol.% Al2O3, 17 vol.% Yttria Stabilized ZrO2 and 3vol.% strontium aluminate platelets. The zirconia grains account for 1.3 mol.% of the Yttria content. Accelerated aging tests in water steam at 142°C, 134°C, 121°C, and 105°C were performed to evaluate the aging kinetics of the composite. X-ray diffraction was used to determine the monoclinic phase content on the material surface. Phase transformation is associated with weakness and increase in roughness of zirconia ceramic implants. Results. The data below shows average monoclinic contents before and after aging in water vapour according to the ISO standard test (134°C, 2 bars water steam, 10 h) on the surface and inside the 28 mm taper(12/14 taper) femoral ball heads manufactured in alumina ceramic composite. There are precisions concerning the roughness and the load to failure before and after aging concerning 28mm diameter heads. Before Aging 13%+/-3% of Monoclinic content. After 10 H at 134°C23%+/-3% of Monoclinic content the roughness of the polished surface remain the same (5nm+/− 2). The load to failure of 28 mm heads before aging is 76 kN +/− 5kN, and 72 kN +/− 5kN after aging. The results show that although a rise in monoclinic content is predictable after long aging duration in vivo, the impact of the transformation is quite different to monolithic zirconia. A zirconia femoral head exhibits an important increase of roughness from 2 nm to more than 50 nm when submitted to the same duration of ageing. Other tests with hip simulators under severe micro separation have been done to analyse the impact of aging on wear performance. The main wear zone on femoral heads underwent a phase transformation from tetragonal to monoclinic (23% monoclinic) at 5 milion cycles duration without any change in roughness after 5Mc duration. Conclusion. This experimental testing program has enabled a prediction for the long-term in vivo environmental resistance of prostheses made out of Alumina Matrix Composite. The substantial improvement in
Introduction. The combined incubation of a composite scaffold with bone marrow stromal cells in a perfusion bioreactor could make up a novel hybrid graft material with optimal properties for early fixation of implant to bone. The aim of this study was to create a bioreactor activated graft (BAG) material, which could induce early implant fixation similar to that of allograft. Two porous scaffold materials incubated with cells in a perfusion bioreactor were tested in this study. Methods and Materials. Two groups of 8 skeletally mature female sheep were anaesthetized before aspiration of bone marrow from the iliac crest. For both groups, mononuclear cells were isolated, and injected into a perfusion bioreactor (Millenium Biologix AG, Switzerland). Scaffold granules Ø∼900–1500 μm, ∼88% porosity) in group 1, consisted of hydroxyapatite (HA, 70%) with -tricalcium-phosphate (−TCP, 30%) (Danish Technological Institute, Denmark). The granules were coated with poly-lactic acid (PLA) 12%, in order to increase the mechanical strength of the material (Phusis, France). Scaffold granules Ø∼900–1400 μm, 80% porosity) in group 2 consisted of pure HA/-TCP (Fin Ceramica, Italy). For both groups, cells were incubated in the bioreactor for 2 weeks. Fresh culture medium supplemented with dexamethasone and ascorbic-acid was added every third or fourth day. Porous titanium alloy implants with diameter=length=10mm (Biomet, USA) were inserted bilaterally in each of the distal femurs of the sheep; thus 4 implants in each sheep. The concentric gap (2 mm) surrounding the implant was filled with 1) BAG (autogenous), 2) granules, 3) granules+bone marrow aspirate (BMA, autologous) or 4) allograft. The sheep were euthanized after 6 weeks. Distal femurs were removed and implant-bone samples were divided in two parts. The superficial part was used for mechanical testing and micro-CT scanning, and the profound part for histomorphometry. Push-out tests were performed on an 858 Bionix MTS hydraulic materials testing machine. Shear
External fixators are the traditional fixation method of choice for contaminated open fractures. However, patient acceptance is low due to the high profile and therefore physical burden of the constructs. An externalised locking compression plate is a low profile alternative. However, the biomechanical differences have not been assessed. The objective of this study was to evaluate the axial and torsional stiffness of the externalised titanium locking compression plate (ET-LCP), the externalised stainless steel locking compression plate (ESS-LCP) and the unilateral external fixator (UEF). A fracture gap model was created to simulate comminuted mid-shaft tibia fractures using synthetic composite bones. Fifteen constructs were stabilised with ET-LCP, ESS-LCP or UEF (five constructs each). The constructs were loaded under both axial and torsional directions to determine construct stiffness.Objectives
Methods
The aims of this study were to establish whether composite fixation
(rail-plate) decreases fixator time and related problems in the
management of patients with infected nonunion of tibia with a segmental
defect, without compromising the anatomical and functional outcomes
achieved using the classical Ilizarov technique. We also wished
to study the acceptability of this technique using patient-based
objective criteria. Between January 2012 and January 2015, 14 consecutive patients
were treated for an infected nonunion of the tibia with a gap and
were included in the study. During stage one, a radical debridement
of bone and soft tissue was undertaken with the introduction of
an antibiotic-loaded cement spacer. At the second stage, the tibia
was stabilized using a long lateral locked plate and a six-pin monorail
fixator on its anteromedial surface. A corticotomy was performed
at the appropriate level. During the third stage, i.e. at the end
of the distraction phase, the transported fragment was aligned and
fixed to the plate with two to four screws. An iliac crest autograft
was added to the docking site and the fixator was removed. Functional
outcome was assessed using the Association for the Study and Application
of Methods of Ilizarov (ASAMI) criteria. Patient-reported outcomes
were assessed using the Musculoskeletal Tumor Society (MSTS) score.Aims
Patients and Methods
Bisphosphonates are widely used as first-line treatment for primary and secondary prevention of fragility fractures. Whilst they have proved effective in this role, there is growing concern over their long-term use, with much evidence linking bisphosphonate-related suppression of bone remodelling to an increased risk of atypical subtrochanteric fractures of the femur (AFFs). The objective of this article is to review this evidence, while presenting the current available strategies for the management of AFFs. We present an evaluation of current literature relating to the pathogenesis and treatment of AFFs in the context of bisphosphonate use.Objectives
Methods
The objective of this study was to determine if a synthetic bone
substitute would provide results similar to bone from osteoporotic
femoral heads during Pushout studies were performed with the dynamic hip screw (DHS)
and the DHS Blade in both cadaveric femoral heads and artificial
bone substitutes in the form of polyurethane foam blocks of different
density. The pushout studies were performed as a means of comparing
the force displacement curves produced by each implant within each
material.Introduction
Methods
The augmentation of fixation with bone cement
is increasingly being used in the treatment of severe osteoporotic fractures.
We investigated the influence of bone quality on the mechanics of
augmentation of plate fixation in a distal femoral fracture model
(AO 33 A3 type). Eight osteoporotic and eight non-osteoporotic femoral
models were randomly assigned to either an augmented or a non-augmented
group. Fixation was performed using a locking compression plate.
In the augmented group additionally 1 ml of bone cement was injected
into the screw hole before insertion of the screw. Biomechanical
testing was performed in axial sinusoidal loading. Augmentation significantly
reduced the cut-out distance in the osteoporotic models by about
67% (non-augmented mean 0.30 mm ( Cite this article:
Our aim was to compare polylevolactic acid screws
with titanium screws when used for fixation of the distal tibiofibular
syndesmosis at mid-term follow-up. A total of 168 patients, with
a mean age of 38.5 years (18 to 72) who were randomly allocated
to receive either polylevolactic acid (n = 86) or metallic (n =
82) screws were included. The Baird scoring system was used to assess
the overall satisfaction and functional recovery post-operatively.
The demographic details and characteristics of the injury were similar
in the two groups. The mean follow-up was 55.8 months (48 to 66).
The Baird scores were similar in the two groups at the final follow-up.
Patients in the polylevolactic acid group had a greater mean dorsiflexion
(p = 0.011) and plantar-flexion of the injured ankles (p <
0.001).
In the same group, 18 patients had a mild and eight patients had
a moderate foreign body reaction. In the metallic groups eight had
mild and none had a moderate foreign body reaction (p <
0.001).
In total, three patients in the polylevolactic acid group and none
in the metallic group had heterotopic ossification (p = 0.246). We conclude that both screws provide adequate fixation and functional
recovery, but polylevolactic acid screws are associated with a higher
incidence of foreign body reactions. Cite this article: