HXLPE acetabular liners were introduced to reduce wear-related complications in THA. However, post-irradiation thermal free radical stabilization can compromise
Introduction. HXLPE acetabular liners were introduced to reduce wear-related complications in THA. However, post-irradiation thermal free radical stabilization can compromise
Introduction. According to American Joint Replacement Registry, particle mediated osteolysis represents 13 % of the knee revision surgeries performed in the United States. The comprehension of mechanical and wear properties of materials envisioned for TJR is a key step in product development. Furthermore, the maintenance of UHMWPE
Intervertebral disc (IVD) degeneration plays a major role in low back pain which is the leading cause of disability. Current treatments in severe cases require surgical intervention often leading to adjacent segment degeneration. Injectable hydrogels have received much attention in recent years as scaffolds for seeding cells to replenish disc cellularity and restore disc properties and function. However, they generally present poor
Introduction.
Objectives. Investigate the incorporation of an antibiotic in bone cement using liposomes (a drug delivery system) with the potential to promote osseointegration at the bone cement interface whilst maintaining antibiotic elution, anti-microbiological efficacy and cement
INTRODUCTION. Avascular necrosis (AVN) of the femoral head (FH) initiates from biological disruptions in the bone and may progress to mechanical failure of the hip. Mechanical and structural properties of AVN bone have not been widely reported, however such understanding is important when designing therapies for AVN. Brown et al.[1] assessed
Introduction. Various biomaterials and bone graft substitute technologies for use in osteomyelitis treatment are currently used in clinal practice. They vary in mode of action (with or without antibiotics) and clinical application (one-stage or two-stage surgery). This systematic review aims to compare the clinical evidence of different synthetic antimicrobial bone graft substitutes and antibiotic-loaded carriers in eradicating infection and clinical outcome in patients with chronic osteomyelitis. Methods. Systematic review according to PRISMA statement on publications 2002-2023. MESH terms: osteomyelitis and bone substitutes. FREE terms: chronic osteomyelitis, bone infection. A standardized data extraction form was be used to extract data from the included papers. Results. Publications with increased methodological quality and clinical evidence for biomaterials in osteomyelitis treatment were published in the last decades. High 85-95% eradication rates of osteomyelitis were observed for various resorbable Ca-P and/or Ca-S biomaterials combined with antibiotics and S53P4 bioactive glass. Level of evidence varies significantly between products. Antibiotic pharmacokinetic release profiles vary between resorbable Ca-P and/or Ca-S biomaterials. Conclusion. Given the high 85-95% eradication rates of osteomyelitis by various resorbable Ca-P and/or Ca-S biomaterials combined with antibiotics and S53P4 bioactive glass, one-stage treatment is preferred. Surgeons should be aware of variations in
Biodegradable metals as orthopaedic implant materials receive substantial scientific and clinical interest. Marketed cardiovascular products confirm good biocompatibility of iron. Solid iron biodegrades slowly in vivo and has got supra-physiological
Introduction. Density-modulus relationships are often used to map the
Introduction. Thermally treated 1st generation highly crosslinked polyethylenes (HXLPE) have demonstrated reduced penetration and osteolysis rates, however, concerns still remain with respect to oxidative stability and
Introduction. In vivo, UHMWPE bearing surfaces are subject to wear and oxidation that can lead to bearing fatigue or fracture. A prior study in our laboratory of early antioxidant (AO) polyethylene retrievals, compared to gamma-sterilized and highly cross-linked (HXL) retrievals, showed them to be more effective at preventing in vivo oxidation. The current analysis expands that early study, addressing the effect of:. manufacturing-variables on as-manufactured UHMWPE;. in vivo time on these initial properties;. identifying important factors in selecting UHMWPE for the hip or knee. Methods. After our prior report, our IRB-approved retrieval laboratory received an additional 96 consecutive AO-retrievals (19 hips, 77 knees: in vivo time 0–6.7 years) of three currently-marketed AO-polyethylenes. These retrievals represented two different antioxidants (Vitamin E and Covernox) and two different delivery methods: blending-prior-to and diffusing-after irradiation cross-linking. Consecutive HXL acetabular and tibial inserts, received at retrieval, with in vivo time of 0–6.7 years (260 remelted, 170 annealed) were used for comparison with AO-retrievals. All retrievals were analyzed for oxidation and trans-vinylene index (TVI) using a Thermo-Scientific iN10 FTIR microscope.
One out of nine Canadian males would suffer prostate cancer (PC) during his lifetime. Life expectancy of males with PC has increased with modern therapy and 90% live >10 years. However, 20% of PC-affected males would develop incurable metastatic diseases. Bone metastases (BM) are present in ~80% of metastatic PC patients, and are the most severe complication of PC, generating severe pain, fractures, spinal cord compression, and death. Interestingly, PC-BMs are mostly osteoblastic. However, the structure of this newly formed bone and how it relates to pain and fracture are unknown. Due to androgen antagonist treatment, different PC phenotypes develop with differential dependency on androgen receptor (AR) signaling: androgen-dependent (AR+), double negative (AR-) and neuroendocrine. How these phenotypes are related to changes in bone structure has not been studied. Here we show a state-of-the-art structural characterization of PCBM and how PC phenotypes are associated to abnormal bone formation in PCBM. Cadaveric samples (n=14) obtained from metastases of PC in thoracic or lumbar vertebrae (mean age 74yo) were used to analyze bone structure. We used micro-computed tomography (mCT) to analyze the three-dimensional structure of the bone samples. After imaging, the samples were sectioned and one 3mm thick section was embedded in epoxy-resin, ground and polished. Scanning electron microscopy (SEM)/energy-dispersive X-ray spectroscopy (EDS) and quantitative backscattering electron (qBSE) imaging were used to determine mineral morphology and composition. Another section was used for histological analysis of the PC-affected bone. Collagen structure, fibril orientation and extracellular matrix composition were characterized using histochemistry. Additionally, we obtained biopsies of 3 PCBM patients undergoing emergency decompression surgery following vertebral fracture and used them for immunohistological characterization. By using mCT, we observed three dysmorphic bone patterns: osteolytic pattern with thinned trabecula of otherwise well-organized structures, osteoblastic pattern defined as accumulation of disorganized matrix deposited on pre-existing trabecula, and osteoblastic pattern with minimum residual trabecula and bone space dominated by accumulation of disorganized mineralized matrix. Comparing mCT data with patho/clinical parameters revealed a trend for higher bone density in males with larger PSA increase. Through histological sections, we observed that PC-affected bone, lacks collagen alignment structure, have a higher number of lacunae and increased amount of proteoglycans as decorin. Immunohistochemistry of biopsies revealed that PC-cells inside bone organize into two manners: i) glandular-like structures where cells maintain their polarization in the expression of prostate markers, ii) diffuse infiltrate that spreads along bone surfaces, with loss of cell polarity. These cells take direct contact with osteoblasts in the surface of trabecula. We define that PCBM are mostly composed by AR+ with some double negative cells. We did not observe neuroendocrine phenotype cells. PCBMs generate predominantly osteoblastic lesions that are characterized by high lacunar density, lack of collagen organization and elevated proteoglycan content. These structural changes are associated with the infiltration of PC cells that are mostly androgen-dependent but have lost their polarization and contact directly with osteoblasts, perhaps altering their function. These changes could be associated with lower
The goal of this study was to identify the effect of mismatches in the subchondral bone surface at the native:graft interface on cartilage tissue deformation in human patellar osteochondral allografts (OCA). Hypothesis: large mismatches in the subchondral bone surface will result in higher stresses in the overlying and surrounding cartilage, potentially increasing the risk of graft failure. Nano-CT scans of ten 16mm diameter cadaveric patellar OCA transplants were used to develop simplified and 3D finite element (FE) models to quantify the effect of mismatches in the subchondral bone surface. The simplified model consisted of a cylindrical plug with a 16 mm diameter (graft) and a washer with a 16 mm inner diameter and 36 mm outer diameter (surrounding native cartilage). The thickness of the graft cartilage was varied from 0.33x the thickness of native cartilage (proud graft subchondral bone) to 3x the thickness of native cartilage (sunken graft subchondral bone; Fig. 1). The thickness of the native cartilage was set to 2 mm. The surface of the cartilage in the graft was matched to the surrounding native cartilage. A 1 MPa pressure was applied to the fixed patellar cartilage surface. Scans were segmented using Dragonfly and meshed using HyperMesh. FE simulations were conducted in Abaqus 2019. The simplified model demonstrated that a high stress region occurred in the cartilage at the sharp bony edge between the graft and native subchondral bone, localized to the region with thinner cartilage. A 20% increase in applied pressure occurs up to 50μm away from the graft edge (primarily in the graft cartilage) for grafts with proud subchondral bone but varies little based on the graft cartilage thickness. For grafts with sunken subchondral bone, the size of the high stress region decreases as the difference between graft cartilage and native cartilage thickness decreases (Fig. 2-4), with a 200 μm high stress region occurring when graft cartilage was 3x thicker than native cartilage (i.e., greater graft cartilage thickness produces larger areas of stress in the surrounding native cartilage). The 3D models reproduced the key features demonstrated in the simplified model. Larger differences between native and graft cartilage thickness cause larger high stress regions. Differences between the 3D and simplified models are caused by heterogeneous cartilage surface curvature and thickness. Simplified and 3D FE analysis confirmed our hypothesis that greater cartilage thickness mismatches resulted in higher cartilage stresses for sunken subchondral bone. Unexpectedly, cartilage stresses were independent of the cartilage thickness mismatch for proud subchondral bone. These FE findings did not account for tissue remodeling, patient variability in tissue
Aseptic loosening is the most common cause of failure in load bearing orthopaedic implants. This is most often attributed to stress shielding, which is caused by a mismatch in
Patellar fractures account for approximately 1% of all fractures. Open reduction and internal fixation is recommended to restore extensor continuity and articular congruity. However, complications such as nonunion and symptomatic hardware, still exist. Furthermore, there is a risk of re-fracturing of the healed bone during the removal of the implants. Magnesium (Mg), a biodegradable metal, has elastic moduli and compressive yield strength that are comparable to those of natural bone. Our previous study showed that released Mg ions enhanced fracture healing. However, Mg-based implants degrade rapidly after implantation and lead to insufficient mechanical strength to support the fracture. Microarc oxidation (MAO) is a metal surface coating that reduces corrosion. We hypothesized that Mg pins, with or without MAO, would enhance fracture healing radiologically, mechanically, and histologically, while MAO would decrease degradation of Mg pins. Patellar fracture was performed on forty-eight 18-week-old female New Zealand White rabbits according to established protocol. Briefly, the patella is osteotomized transversely and a tunnel (1.1mm) was drilled longitudinally through the two bone fragments. A pin (1 mm, stainless steel, Mg, or MAO-Mg) was inserted into the tunnel. The reduced construct was stabilized with a figure-of-eight band wire (⊘ 0.6 mm stainless steel wire). Cast immobilization was applied for 6 weeks. The rabbits were euthanized at week 8 and 12 post-operation. Microarchitecture and
Purpose. The purpose of this study is to analyse regional differences in the microstructural and
Introduction. The input
INTRODUCTION. Wear induced osteolysis, material property degradation and oxidation remain a concern in cobalt chrome on polyethylene THR. ECIMA is a cold-irradiated, mechanically annealed, vitamin E blended HXLPE developed to maintain
Do we need new polyethylene? Is there a clinical problem with first generation crosslinked polyethylene (XLPE)? Are we being duped into believing that doped polyethylene will solve a problem?. Clinical failures of polyethylene bearing total hip replacements are related to wear and the