Advertisement for orthosearch.org.uk
Results 1 - 20 of 157
Results per page:
Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_7 | Pages 75 - 75
1 Jul 2020
Decker M Lanting B Islam AZM Klassen R Walzak MJ McCalden RW
Full Access

HXLPE acetabular liners were introduced to reduce wear-related complications in THA. However, post-irradiation thermal free radical stabilization can compromise mechanical properties, leave oxidation-prone residual free radicals, or both. Reports of mechanical failure of HXLPE acetabular liner rims raise concerns about thermal free radical stabilization and in vivo oxidization on implant properties. The purpose of this study is to explore the differences in the mechanical, physical and chemical properties of HXLPE acetabular liner rims after extended time in vivo between liners manufactured with different thermal free radical stabilization techniques. Remelted, single annealed and sequentially annealed retrieved HXLPE acetabular liners with in vivo times greater than 4.5 years were obtained from our implant retrieval laboratory. All retrieved liners underwent an identical sanitation and storage protocol. For mechanical testing, a total of 55 explants and 13 control liners were tested. Explant in vivo time ranged from 4.6 – 14 years and ex vivo time ranged from 0 – 11.6 years. Rim mechanical properties were tested by microindentation hardness testing using a Micromet II Vickers microhardness tester following ASTM standards. A subset of 16 explants with ex vivo time under one year along with five control liners were assessed for oxidation by FTIR, crystallinity by Raman spectroscopy, and evidence of microcracking by SEM. No significant difference in in vivo or ex vivo was found between thermal stabilization groups in either set of explants studied. In the mechanically tested explants, there was no significant correlation between in vivo time and Vickers hardness in any thermal stabilization group. A significant correlation was found between ex vivo time and hardness in remelted liners (r=.520, p = .011), but not in either annealed cohort. ANCOVA with ex vivo time as a covariate found a significant difference in hardness between the thermal free radical stabilization groups (p 0.1) was found in retrieved remelted (25%), single annealed (100%) and sequentially annealed (75%) liner rims. Crystallinity was increased in the subsurface region relative to control liners for both annealed, but not remelted, liner rims. Hardness was increased in oxidized rims for both annealed cohorts but not in the remelted cohort. Microcracking was only found along the surface of one unoxidized remelted liner rim. Mechanical properties were reduced at baseline and worsened after in vivo time for remelted HXLPE liner rims. Rim oxidation was detected in all groups. Oxidation was associated with increased crystallinity and hardness in annealed cohorts, but not remelted liners. Increased crystallinity and oxidation do not appear to be directly causing the worsened mechanical behavior of remelted HXLPE liner rims after extended in vivo time


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_2 | Pages 100 - 100
1 Feb 2020
Decker M Walzak M Khalili A Klassen R Teeter M McCalden R Lanting B
Full Access

Introduction. HXLPE acetabular liners were introduced to reduce wear-related complications in THA. However, post-irradiation thermal free radical stabilization can compromise mechanical properties, leave oxidation-prone residual free radicals, or both. Reports of mechanical failure of HXLPE acetabular liner rims raise concerns about thermal free radical stabilization and in vivo oxidization on implant properties. The purpose of this study is to explore the differences in the mechanical, physical and chemical properties of HXLPE acetabular liner rims after extended time in vivo between liners manufactured with different thermal free radical stabilization techniques. Material and Methods. Remelted, single annealed and sequentially annealed retrieved HXLPE acetabular liners with in vivo times greater than 4.5 years were obtained from our implant retrieval laboratory. All retrieved liners underwent an identical sanitation and storage protocol. For mechanical testing, a total of 55 explants and 13 control liners were tested. Explant in vivo time ranged from 4.6 – 14.0 years and ex vivo time ranged from 0 – 11.6 years. Rim mechanical properties were tested by microindentation hardness testing using a Micromet II Vickers microhardness tester following ASTM standards. A subset of 16 explants with ex vivo time under one year along with five control liners were assessed for oxidation by FTIR, crystallinity by Raman spectroscopy, and evidence of microcracking by SEM. Results. No significant difference in in vivo or ex vivo time was found between thermal stabilization groups in either set of explants studied. In the mechanically tested explants, there was no significant correlation between in vivo time and Vickers hardness in any thermal stabilization group. A significant correlation was found between ex vivo time and hardness in remelted liners (r=.520, p=.011), but not in either annealed cohort. ANCOVA with ex vivo time as a covariate found a significant difference in hardness between the thermal free radical stabilization groups (p<.0005, η. 2. = 0.322). Post hoc analysis revealed hardness was significantly lower in the retrieved remelted group compared to both the single annealed (p=.001) and sequentially annealed (p<.0005) cohorts. Hardness was significantly higher in the retrieved remelted liners compared to controls (p=.007), with no different in either annealed cohort. Detectable subsurface oxidation (OI > 0.1) was found in retrieved remelted (25%), single annealed (100%) and sequentially annealed (75%) liner rims. Crystallinity was increased in the subsurface region relative to control liners for both annealed, but not remelted, liner rims. Hardness was increased in oxidized rims for both annealed cohorts but not in the remelted cohort. Microcracking was only found along the surface of one unoxidized remelted liner rim. Conclusion. Mechanical properties were reduced at baseline and worsened after in vivo time for remelted HXLPE liner rims. Rim oxidation was detected in all groups. Oxidation was associated with increased crystallinity and hardness in annealed cohorts, but not remelted liners. Increased crystallinity and oxidation do not appear to be directly causing the worsened mechanical behavior of remelted HXLPE liner rims after extended in vivo time. For any figures or tables, please contact authors directly


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_1 | Pages 37 - 37
1 Feb 2021
De Mello Gindri I Da Silva L More ADO Salmoria G De Mello Roesler C
Full Access

Introduction. According to American Joint Replacement Registry, particle mediated osteolysis represents 13 % of the knee revision surgeries performed in the United States. The comprehension of mechanical and wear properties of materials envisioned for TJR is a key step in product development. Furthermore, the maintenance of UHMWPE mechanical properties after material modification is an important aspect of material success. Initial studies conducted by our research group demonstrated that the incorporation of ibuprofen in UHMWPE had a minor impact on UHMWPE physicochemical and mechanical properties. Drug release was also evaluated and resulted in an interesting profile as a material to be used as an anti-inflammatory system. Therefore, the present study investigated the effect of drug release on the mechanical and biological properties of ibuprofen-loaded UHMWPE. Experimental. UHMWPE resin GUR 1020 from Ticona was for sample preparation. Samples with drug concentrations of 3% and 5% wt were consolidated as well as samples without anti-inflammatory addition through compression molding at 150 °C and 5 MPa for 15 minutes. Mechanical properties were evaluated via the tensile strength experiment (ASTM D638) and dynamic mechanic tests. Wear resistance was measured using the pin on disc (POD) apparatus. Finally, cytotoxicity analysis was conducted based on ISO 10993–5. Results. Dynamic-mechanic analysis demonstrated no difference in flexion modulus and stress for all materials (Table 1). No difference was also verified during cyclical loading experiments (Table 1), which indicates that the drug concentration added to material composition did not affect these properties. POD experiments were proposed to evaluate wear resistance of ibuprofen-loaded UHMWPE samples considering the combination of materials similar to those employed in TJR. Results from POD tests are presented in Table 1. Volumetric wear was close to zero for all samples after 200 thousand cycles. Comprehension of the effect of drug release on mechanical properties is essential to estimate how the material will behave after implantation. Therefore, mechanical properties were assessed after 30 days of ibuprofen release and the results were compared with those obtained in samples as prepared (Table 2). Initial results demonstrated a decrease in elastic modulus in samples prepared with ibuprofen. However, no difference was verified between UHMWPE, UHMWPE 3% IBU and UHMWPE 5% IBU after ibuprofen release. Finally, cell viability of UHMWPE 3% IBU and UHMWPE 5% was found to be superior to 100% (Figure 1). Therefore, both materials can be considered nontoxic. Conclusions. Ibuprofen-loaded UHMWPE did not demonstrate a significant influence on the mechanical and biological behavior of UHMWPE. Dynamic-mechanical tests demonstrated constancy for all samples under analysis. Wear testing resulted in gravimetric wear close to zero, for all tested materials. Mechanical properties conducted after 30 days of ibuprofen release also had a positive outcome. Although presenting a difference in modulus prior and after release tests, modulus and tensile yield stress remained inside acceptable range indicated to UHMWPE used in orthopedic implants. Furthermore, after drug elution UHMWPE 3% IBU and UHMWPE 5% IBU recovered original UHMWPE properties. Cytotoxicity assessment was performed and both ibuprofen-based formulations were considered nontoxic according to ISO 10993–5. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 46 - 46
1 Jul 2020
Adoungotchodo A Lerouge S Alinejad Y Mwale F Grant M Epure L Antoniou J
Full Access

Intervertebral disc (IVD) degeneration plays a major role in low back pain which is the leading cause of disability. Current treatments in severe cases require surgical intervention often leading to adjacent segment degeneration. Injectable hydrogels have received much attention in recent years as scaffolds for seeding cells to replenish disc cellularity and restore disc properties and function. However, they generally present poor mechanical properties. In this study, we investigated several novel thermosensitive chitosan hydrogels for their ability to mimic the mechanical properties of the nucleus pulposus (NP) while being able to sustain the viability of NP cells, and retain proteoglycans. CH hydrogels were prepared by mixing the acidic chitosan solution (2% w/v) with various combinations of three gelling agents: sodium hydrogen carbonate (SHC) and/or beta-glycerophosphate (BGP) and/or phosphate buffer (PB) (either BGP0.4M, SHC0.075M-BGP0.1M, SHC0.075M-PB0.02M or SHC0.075M-PB0.04M). The gelation speed was assessed by following rheological properties within 1h at 37°C (strain 5% and 1Hz). The mechanical properties were characterized and compared with that of human NP tissues. Elastic properties of the hydrogels were studied by evaluating the secant modulus in unconfined compression. Equilibrium modulus was also measured, using an incremental stress-relaxation test 24h after gelation in unconfined compression (5% strain at 5%/s followed by 5min relaxation, five steps). Cells from bovine IVD were encapsulated in CH-based gels and maintained in culture for 14 days. Cytocompatibility was assessed by measuring cell viability, metabolism and DNA content. Glycosaminoglycan (GAG) synthesis (retained in the gel and released) was determined using DMMB assay. Finally injectability was tested using human cadaveric discs. Unconfined compression confirmed drastically enhanced mechanical properties compared to conventional CH-BGP hydrogels (secant Young modulus of 105 kPa for SHC0.075PB0.02 versus 3–6 kPa for BGP0.04). More importantly, SHC0.075PB0.02 and SHC0.075BGP0.1 hydrogels exhibited mechanical properties very similar to NP tissue. For instance, equilibrium modulus was 5.2±0.6 KPa for SHC0.075PB0.02 and 8±0.8 KPa for SHC0.075BGP0.1 compared to 6.1±1.7 KPa for human NP tissue. Rheological properties and gelation time (G′=G″ after less than 15 s at 37°C, and rapid increase of G') of these hydrogels also appear to be adapted to this application. Cell survival was greater than 80% in SHC0.075BGP0.1 and SHC0.075PB0.02 hydrogels. Cells encapsulated in the new formulations also showed significantly higher metabolic activity and DNA content after 14 days of incubation compared to cells encapsulated in BGP0.4 hydrogel. Cells encapsulated in SHC0.075BGP0.1 and SHC0.075PB0.02 produced significantly higher amounts of glycosaminoglycans (GAG) compared to cells encapsulated in SHC0.075PB0.04 and BGP0.4 hydrogels. The total amount of GAG was higher in SHC0.075BGP0.1 hydrogel compared to SHC0.075PB0.02. Interestingly, both the SHC0.075BGP0.1 and SHC0.075PB0.02 hydrogels retained similar amounts of GAG. Injectability through a 25G syringe, filling of nuclear clefts and good retention in human degenerated discs was demonstrated for SHC0.075PB0.02 hydrogel. SHC0.075BGP0.1 appears to be a particularly promising injectable scaffold for IVD repair by providing suitable structural environment for cell survival, ECM production and mechanical properties very similar to that of NP tissue


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 51 - 51
1 Apr 2019
Knowles NK Kusins J Columbus M Athwal G Ferreira L
Full Access

Introduction. Mechanical property relationships used in the computational modeling of bones are most often derived using mechanical testing of normal cadaveric bone. However, a significant percentage of patients undergoing joint arthroplasties exhibit some form of pathologic bone disease, such as osteoarthritis. As such, the objective of this study was to compare the micro-architecture and apparent modulus (E. app. ) of humeral trabecular bone in normal cadaveric specimens and bone extracted from patients undergoing total shoulder arthroplasty. Methods. Micro-CT scans were acquired at 20 µm spatial resolution for humeral heads from non-pathologic cadavers (n=12) and patients undergoing total shoulder arthroplasty (n=10). Virtual cylindrical cores were extracted along the medial-lateral direction. Custom-code was used to generate micro finite element models (µFEMs) with hexahedral elements. Each µFEM was assigned either a homogeneous tissue modulus of 20 GPa or a heterogeneous tissue modulus scaled by CT- intensity. Simulated compression to 0.5% apparent strain was performed in the medial-lateral direction. Morphometric parameters and apparent modulus-bone volume fraction relationships were compared between groups. Results. Comparing morphometric parameters, arthroplasty patients had significantly larger bone volume fractions (p = .023) and mean trabecular separation (p = .031), but no significant differences in mean trabecular thickness (p = .060) or trabecular number (p = .178). Variations were observed in the fit curves between normal and arthroplasty cases, with normal bone being best fit by power relationships, and arthroplasty bone exhibiting a more linear relationship. There was no significant difference in mean apparent modulus for homogeneous tissue moduli (p = .060) but was a significant difference for heterogeneous tissue moduli (p = .038). DISCUSSION. Consistent with previously developed relationships that map apparent mechanical properties, normal cadaveric bone was best fit by a power relationship with an exponential coefficient over 2. However, the apparent modulus- volume fraction relationship in the arthroplasty patient bone exhibited a more linear relationship. These results suggest that the architectural and mechanical properties of normal cadaveric and arthroplasty patient trabecular bone are not equal. Since these relationships are used to map apparent mechanical properties to computational models, these preliminary results suggest that relationships derived from cadaveric normal bone may map the apparent mechanical properties differently than patients who undergo arthroplasty. Additional samples added to this dataset will allow for mechanical property relationships to be developed that account for these bone mechanical property variations. This has the potential to greatly improve the computational modeling of patients undergoing arthroplasty procedures and computational models that are used to design and improve shoulder arthroplasty components


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 111 - 111
1 Apr 2019
Beamish RE Ayre WN Evans S
Full Access

Objectives. Investigate the incorporation of an antibiotic in bone cement using liposomes (a drug delivery system) with the potential to promote osseointegration at the bone cement interface whilst maintaining antibiotic elution, anti-microbiological efficacy and cement mechanical properties. Prosthetic joint infection and aseptic loosening are associated with significant morbidity. Antibiotic loaded bone cement is commonly used and successfully reduces infection rates; however, there is increasing resistance to the commonly used gentamicin. Previous studies have shown gentamicin incorporated into bone cement using liposomes can maintain the cement's mechanical properties and improve antibiotic elution. The phospholipid phosphatidyl-l-serine has been postulated to encourage surface osteoblast attachment and in a liposome could improve osseointegration, thereby reducing aseptic loosening. Preliminary clinical isolate testing showed excellent antimicrobial action with amoxicillin therefore the study aims were to test amoxicillin incorporated into bone cement using liposomes containing phosphatidyl-l-serine in terms of antibiotic elution, microbiological profile and mechanical properties. Methods. Amoxicillin was encapsulated within 100nm liposomes containing phosphatidyl-L-serine and added to PMMA bone cement (Palacos R (Heraeus Medical, Newbury, UK)). Mechanical testing was performed according to Acrylic Cement standards (ISO BS 5833:2002). Elution testing was carried out along with microbiological testing utilising clinical isolates. Results. Liposomal encapsulated amoxicillin PMMA bone cement exceeded minimum ISO BS 5833:2002 standards, had better elution at 12.9% when compared with plain amoxicillin (p=0.036 at 48 hours) or commercial gentamicin cement (Palacos R+G, Heraeus Medical, Newbury, UK – previous studies showed 6% elution over the same time period). Amoxicillin showed superior antimicrobial action when compared with gentamicin of the same concentration. However, liposomal encapsulated amoxicillin in solution and liposomal encapsulated amoxicillin in PMMA were both less effective than free amoxicillin in bacterial growth inhibition. The liposomal amoxicillin also seemed to decrease the cement setting time. Conclusions. Phosphatidyl-l-serine containing liposomes maintained the cement's mechanical properties and seemed to have better antibiotic elution, however, had less effective antibacterial action than plain amoxicillin. This difference in antibacterial action requires further investigation along with investigation of osteoblast attachment to phosphatidyl-l-serine containing liposomes within cement. Plain amoxicillin, for those not penicillin allergic, seems to be a credible alternative to gentamicin for incorporation in PMMA bone cement. It has shown superior antibacterial action, which may improve infection rates, whilst maintaining the cement's mechanical properties


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_6 | Pages 51 - 51
1 Apr 2018
Avadi MS Meng L Anderson J Fisher J Wang M Jin Z Qiu Y Williams S
Full Access

INTRODUCTION. Avascular necrosis (AVN) of the femoral head (FH) initiates from biological disruptions in the bone and may progress to mechanical failure of the hip. Mechanical and structural properties of AVN bone have not been widely reported, however such understanding is important when designing therapies for AVN. Brown et al.[1] assessed mechanical properties of different regions of AVN FH bone and reported 52% reduction in yield strength and 72% reduction in elastic modulus of necrotic regions when compared to non-necrotic bone. This study aimed to characterise structural and mechanical properties of FH bone with AVN and understand the relationship between lesion volume and associated mechanical properties. METHODS. Twenty FH specimens from patients undergoing hip arthroplasty for AVN and six non-pathological cadaveric FH controls were collected. Samples were computed tomography scanned and images analysed for percentage lesion volume with respect to FH volume. Samples were further divided for structural and mechanical testing. The mechanical property group were further processed to remove 9mm cylindrical bone plugs from the load bearing and non-load-bearing regions of the FHs. FH and bone plug samples were tested in compression (1mm/min); elastic modulus and yield stress were calculated. RESULTS. Imaging. Individual lesion size within AVN FHs varied: multiple small lesions or small numbers of large lesions were present in all FHs. Mean lesion volume percentage for AVN FHs was significantly greater than control FHs (p30% total FH volume. Structural Properties: The mean elastic modulus for AVN FHs was 15% lower than that of control FHs and mean yield stress was 4% lower than that of control FHs, however this difference was not significant. Mechanical Properties. The mean elastic modulus and yield stress of bone plugs from the load-bearing regions of AVN FHs were significantly lower than those of control samples (79% and 77% respectively; p<0.05, Kruskal-Wallis), however, for non-load-bearing samples, mean elastic modulus and yield stress of AVN FHs were significantly higher than control samples (by 153% and 123% respectively; p<0.05, Kruskal-Wallis). DISCUSSION. Although mechanical properties of bone in load-bearing regions of AVN FHs were significantly less than those of control FHs, replicating previous findings by Brown et al. (1981, CORR. 156, 240-7), mechanical properties in the non-load bearing regions were increased. This may be due to adaptation of the non-load bearing region to support loads following AVN in normally load bearing regions, or due to the presence of denser sclerotic tissue. In this study, necrotic bone samples demonstrated smaller changes in mechanical properties in the load-bearing region with respect to those regions in the control samples than previously reported by Brown et al.. This may be due to differences in experimental methods (e.g. patient demographics, quality of control bone samples, loading rate, and location of samples) or due to the disease stage of the AVN FHs from which tissues were taken. In addition, this study has demonstrated that necrotic lesions are not consistent in quantity, size and location


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_19 | Pages 8 - 8
22 Nov 2024
Arts C
Full Access

Introduction. Various biomaterials and bone graft substitute technologies for use in osteomyelitis treatment are currently used in clinal practice. They vary in mode of action (with or without antibiotics) and clinical application (one-stage or two-stage surgery). This systematic review aims to compare the clinical evidence of different synthetic antimicrobial bone graft substitutes and antibiotic-loaded carriers in eradicating infection and clinical outcome in patients with chronic osteomyelitis. Methods. Systematic review according to PRISMA statement on publications 2002-2023. MESH terms: osteomyelitis and bone substitutes. FREE terms: chronic osteomyelitis, bone infection. A standardized data extraction form was be used to extract data from the included papers. Results. Publications with increased methodological quality and clinical evidence for biomaterials in osteomyelitis treatment were published in the last decades. High 85-95% eradication rates of osteomyelitis were observed for various resorbable Ca-P and/or Ca-S biomaterials combined with antibiotics and S53P4 bioactive glass. Level of evidence varies significantly between products. Antibiotic pharmacokinetic release profiles vary between resorbable Ca-P and/or Ca-S biomaterials. Conclusion. Given the high 85-95% eradication rates of osteomyelitis by various resorbable Ca-P and/or Ca-S biomaterials combined with antibiotics and S53P4 bioactive glass, one-stage treatment is preferred. Surgeons should be aware of variations in mechanical properties and antibiotic pharmacokinetic release profiles between Ca-P and CA-s products. Mechanical, biological and antimicrobial properties of bioactive glass are formulation dependent. Currently, only S53P4 bioactive glass has proven antimicrobial properties. Based on this systematic review antibiotic loaded fleeces should be used with caution and restraint


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 31 - 31
1 Jul 2020
Jahr H Pavanram P Li Y Lietaert K Kubo Y Weinans H Zhou J Pufe T Zadpoor A
Full Access

Biodegradable metals as orthopaedic implant materials receive substantial scientific and clinical interest. Marketed cardiovascular products confirm good biocompatibility of iron. Solid iron biodegrades slowly in vivo and has got supra-physiological mechanical properties as compared to bone and porous implants can be optimized for specific orthopaedic applications. We used Direct Metal Printing (DMP)3 to additively manufacture (AM) scaffolds of pure iron with fine-tuned bone-mimetic mechanical properties and improved degradation behavior to characterize their biocompatibility under static and dynamic 3D culture conditions using a spectrum of different cell types. Atomized iron powder was used to manufacture scaffolds with a repetitive diamond unit cell design on a ProX DMP 320 (Layerwise/3D Systems, Belgium). Mechanical characterization (Instron machine with a 10kN load cell, ISO 13314: 2011), degradation behavior under static and dynamic conditions (37ºC, 5% CO2 and 20% O2) for up of 28 days, with μCT as well as SEM/energy-dispersive X-ray spectroscopy (EDS) (SEM, JSM-IT100, JEOL) monitoring under in vivo-like conditions. Biocompatibility was comprehensively evaluated using a broader spectrum of human cells according to ISO 10993 guidelines, with topographically identical titanium (Ti-6Al-4V, Ti64) specimen as reference. Cytotoxicity was analyzed by two-way ANOVA and post-hoc Tukey's multiple comparisons test (α = 0.05). By μCT, as-built strut size (420 ± 4 μm) and porosity of 64% ± 0.2% were compared to design values (400 μm and 67%, respectively). After 28 days of biodegradation scaffolds showed a 3.1% weight reduction after cleaning, while pH-values of simulated body fluids (r-SBF) increased from 7.4 to 7.8. Mechanical properties of scaffolds (E = 1600–1800 MPa) were still within the range for trabecular bone, then. At all tested time points, close to 100% biocompatibility was shown with identically designed titanium (Ti64) controls (level 0 cytotoxicity). Iron scaffolds revealed a similar cytotoxicity with L929 cells throughout the study, but MG-63 or HUVEC cells revealed a reduced viability of 75% and 60%, respectively, already after 24h and a further decreased survival rate of 50% and 35% after 72h. Static and dynamic cultures revealed different and cell type-specific cytotoxicity profiles. Quantitative assays were confirmed by semi-quantitative cell staining in direct contact to iron and morphological differences were evident in comparison to Ti64 controls. This first report confirms that DMP allows accurate control of interconnectivity and topology of iron scaffold structures. While microstructure and chemical composition influence degradation behavior - so does topology and environmental in vitro conditions during degradation. While porous magnesium corrodes too fast to keep pace with bone remodeling rates, our porous and micro-structured design just holds tremendous potential to optimize the degradation speed of iron for application-specific orthopaedic implants. Surprisingly, the biological evaluation of pure iron scaffolds appears to largely depend on the culture model and cell type. Pure iron may not yet be an ideal surface for osteoblast- or endothelial-like cells in static cultures. We are currently studying appropriate coatings and in vivo-like dynamic culture systems to better predict in vivo biocompatibility


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 6 - 6
1 Apr 2019
Knowles NK Langohr GDG Faieghi M Nelson A Ferreira L
Full Access

Introduction. Density-modulus relationships are often used to map the mechanical properties of bone based on CT- intensity in finite element models (FEMs). Although these relationships are thought to be site-specific, relationships developed for alternative anatomic locations are often used regardless of bone being modeled. Six relationships are commonly used in finite element studies of the shoulder; however, the accuracy of these relationships have yet to be compared. This study compares each of these six relationships ability to predict apparent strain energy density (SED. app. ) in trabecular bone cores from the glenoid. Methods. Quantitative-CT (QCT) (0.625 mm isotropic voxels), and µ-CT scans (0.032 mm isotropic voxels) were obtained for fourteen cadaveric scapulae (7 male, 7 female). Micro finite element models (µ-FEMs) were created from 98 virtual ‘cores’ using direct conversion to hexahedral elements. Two µ-FEM cases were considered: homogeneous tissue modulus of 20 GPa, and heterogeneous tissue modulus scaled by CT intensity of the µ-CT images (196 models). Each µ- FEM model was compressively loaded to 0.5% apparent strain and apparent strain energy density (SED. app. ) was calculated. Additionally, each of the six density-modulus relationships were used to map heterogeneous material properties to co- registered QCT-derived models (588 models in total). The loading and boundary conditions were replicated in the QCT-FEMs and the SED. app. was calculated and compared to the µ-FEM SED. app. To account for more samples than donors, restricted maximum likelihood estimation (REML) linear regression compared µ-FEM SED. app. and QCT-FEM SED. app. for each relationship. Results. When considering comparisons between QCT-FEMs and µ-FEMs with a homogeneous tissue modulus, near absolute statistical agreement (Y=X) was observed between the µ-FEMs and the QCT-FEMs using the Morgan et al. (2003) pooled relationship. Not surprisingly, due to the similarity between the two relationships, the Gupta & Dan (2004) and Carter and Hayes (1977) models showed near identical REML linear regression fit parameters. All relationships other than the Morgan et al. (2003) pooled relationship, greatly underestimated the µ-FEM apparent strain energy density (SED. app. ) when considering a homogeneous tissue modulus in the µ-FEMs. The same result with the pooled relationship did not hold true when heterogeneous tissue modulus was considered in the µ-FEMs. The Büchler et al., (2002) relationship most accurately predicted the SED. app. for this comparison. Interestingly, the Gupta & Dan (2004) and Carter and Hayes (1977) relationships again showed near identical REML linear regression fit parameters. DISCUSSION. This study compared six common density-modulus relationships used to map mechanical properties of bone in shoulder FE studies. It was found that when considering a homogeneous tissue modulus for µ-FEMs, relationships pooled from alternative anatomic locations may accurately predict the mechanical properties of glenoid trabecular bone. However, when considering a heterogeneous tissue modulus, this did not hold true. Further studies to determine if these relationships can be translated to whole bones may provide insight into the predictive capabilities of using pooled density-modulus equations in the mapping of mechanical properties in future FEMs of the shoulder


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_9 | Pages 11 - 11
1 May 2016
MacDonald D Mehta K Klein G Hartzband M Levine H Mont M Kurtz S
Full Access

Introduction. Thermally treated 1st generation highly crosslinked polyethylenes (HXLPE) have demonstrated reduced penetration and osteolysis rates, however, concerns still remain with respect to oxidative stability and mechanical properties of these materials. To address these concerns, manufacturers have introduced the use of antioxidants to quench free radicals while maintaining the mechanical properties of the HXLPE. Two common antioxidants are α-tocopherol (Vitamin-E) and pentaerythritol tetrakis (PBHP). These may be either mixed prior to consolidation, or diffused throughout the polymer after consolidation and irradiation. In vitrostudies have shown that these materials are oxidatively stable and have improved mechanical properties compared to 1st generation HXLPEs; however, few studies have investigated the in vivo performance of anti-oxidant stabilized HXLPE. The purpose of this study was to investigate the revision reasons, oxidation, and mechanical properties of retrieved short-term anti-oxidant HXLPE. Methods. Between 2010 and 2015, 73 anti-oxidant HXLPE components were collected as a part of an IRB approved, multi-institutional retrieval analysis program during routine revision surgery. Of the seventy-three components, 30 (41%) were acetabular liners, whereas, 43 were tibial inserts. The components were fabricated from three different materials: Vitamin-E Diffused HXLPE (n=30; E1, Biomet), Vitamin-E Blended (n = 41; Vivacit-E, Zimmer) and PBHP blended (n = 2, AOX, DePuy). The hip and knee components were implanted for 0.7 ± 0.8 years (Range: 0.0–2.25 years) and 0.8 ± 1.1 years (Range: 0.0–4.5 years), respectively. Implantation time, patient weight, age, gender, and activity levels were similar between hip and knee components (Table 1). For oxidation analysis, thin slices (∼200μm) were taken from medial condyle and central eminence of the tibial inserts or the superior/inferior axis from hip components. The slices were boiled in heptane for six hours to extract lipids absorbed in vivo. 3-millimeter FTIR line scans were taken perpendicular to the surface of interest, according to the ASTM F2102. Mechanical properties were assessed using the small punch test (ASTM F2183). Forty-three explants were available for destructive testing. Results. The predominant revision reasons were loosening, instability, and infection (Figure 1). Oxidation was low in both the hip and knee components (Mean OI≤0.1; Figure 2). For both tibial inserts and acetabular liners, there was no correlation between implantation time and oxidation indices (p>0.05). In the tibial inserts, the AP face had slightly higher oxidation indices than the articulating surface (Mean difference = 0.04; p=0.03). There was no difference in ultimate load between hips and knees at the surface (p=0.14) or the subsurface (p=0.38). Discussion. This study analyzed the revision reasons, oxidative stability, and mechanical properties of short-term retrieved 2nd generation HXLPE. The observations of this study show that anti-oxidant infused HXLPE exhibited low oxidative indices (Mean OI<0.1). There was no difference observed in the mechanical properties of these materials between hip and knee applications. However, this study is limited by short implantation times. This is unavoidable because the materials have only recently become clinically available. The data presented serves as a benchmark for future studies when longer-term retrieved implants become available


Introduction. In vivo, UHMWPE bearing surfaces are subject to wear and oxidation that can lead to bearing fatigue or fracture. A prior study in our laboratory of early antioxidant (AO) polyethylene retrievals, compared to gamma-sterilized and highly cross-linked (HXL) retrievals, showed them to be more effective at preventing in vivo oxidation. The current analysis expands that early study, addressing the effect of:. manufacturing-variables on as-manufactured UHMWPE;. in vivo time on these initial properties;. identifying important factors in selecting UHMWPE for the hip or knee. Methods. After our prior report, our IRB-approved retrieval laboratory received an additional 96 consecutive AO-retrievals (19 hips, 77 knees: in vivo time 0–6.7 years) of three currently-marketed AO-polyethylenes. These retrievals represented two different antioxidants (Vitamin E and Covernox) and two different delivery methods: blending-prior-to and diffusing-after irradiation cross-linking. Consecutive HXL acetabular and tibial inserts, received at retrieval, with in vivo time of 0–6.7 years (260 remelted, 170 annealed) were used for comparison with AO-retrievals. All retrievals were analyzed for oxidation and trans-vinylene index (TVI) using a Thermo-Scientific iN10 FTIR microscope. Mechanical properties were evaluated for 35 tibial inserts by uniaxial tensile testing using an INSTRON load frame. Cross-link density (n=289) was measured using a previously published gravimetric gel swell technique. Oxidation was reported as maximum ketone oxidation index (KOI) measured for each bearing. TVI was reported as the average of all scans for each material. Cross-link density and mechanical properties were evaluated as a function of both TVI and oxidation. Results. Minimal increase in oxidation was seen in these AO-retrievals, out to almost 7 years in vivo. In contrast, HXL-retrievals showed increasing KOI with time in vivo (annealed-HXL = 0.127/year, remelted-HXL = 0.036/year, p<0.001). HXL oxidation rate was higher in knees (0.091/year) than in hips (0.048/year), p<0.001. Cross-link density (XLD) correlated positively with TVI for both HXL (Pearson's correlation=0.591, p<0.001) and AO (Pearson's correlation=0.598, p<0.001) retrievals. AO-materials had higher TVI for the same or similar XLD than did HXL polyethylene. XLD correlated negatively with KOI for HXL retrievals (Pearson's correlation=−0.447, p<0.001). Mechanical properties varied by material across all materials evaluated, with tensile toughness correlating negatively with increasing TVI (Pearson Correlation=−0.795, p<0.001). Discussion. Irradiation cross-linking has been used effectively to improve wear resistance. Residual free radicals from irradiation are the target of AO-polyethylene, to prevent loss of UHMWPE XLD, resulting from in vivo oxidation of free radicals as seen in HXL retrievals, and toughness, resulting from oxidation or initial remelting. Despite different manufacturing variables, AO-polyethylene retrievals in this cohort had minimal oxidation and no change in XLD or toughness due to oxidation. However, toughness did vary with irradiation dose as did cross-link density. To achieve the same level of cross-linking as HXL-polyethylene required a higher irradiation dose in blended AO-polyethylene. AO-polyethylenes evaluated in this study had toughness that decreased with irradiation dose, but avoided loss of toughness due to remelting. Because AO-polyethylenes did not oxidize, they did not show the decrease of cross-link density, and potential loss of wear resistance, seen in HXL-polyethylene. For any figures or tables, please contact authors directly


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_12 | Pages 19 - 19
1 Dec 2022
Eltit F Wang Q Xu S Satra M Liu D Wang R Charest-Morin R Cox M
Full Access

One out of nine Canadian males would suffer prostate cancer (PC) during his lifetime. Life expectancy of males with PC has increased with modern therapy and 90% live >10 years. However, 20% of PC-affected males would develop incurable metastatic diseases. Bone metastases (BM) are present in ~80% of metastatic PC patients, and are the most severe complication of PC, generating severe pain, fractures, spinal cord compression, and death. Interestingly, PC-BMs are mostly osteoblastic. However, the structure of this newly formed bone and how it relates to pain and fracture are unknown. Due to androgen antagonist treatment, different PC phenotypes develop with differential dependency on androgen receptor (AR) signaling: androgen-dependent (AR+), double negative (AR-) and neuroendocrine. How these phenotypes are related to changes in bone structure has not been studied. Here we show a state-of-the-art structural characterization of PCBM and how PC phenotypes are associated to abnormal bone formation in PCBM. Cadaveric samples (n=14) obtained from metastases of PC in thoracic or lumbar vertebrae (mean age 74yo) were used to analyze bone structure. We used micro-computed tomography (mCT) to analyze the three-dimensional structure of the bone samples. After imaging, the samples were sectioned and one 3mm thick section was embedded in epoxy-resin, ground and polished. Scanning electron microscopy (SEM)/energy-dispersive X-ray spectroscopy (EDS) and quantitative backscattering electron (qBSE) imaging were used to determine mineral morphology and composition. Another section was used for histological analysis of the PC-affected bone. Collagen structure, fibril orientation and extracellular matrix composition were characterized using histochemistry. Additionally, we obtained biopsies of 3 PCBM patients undergoing emergency decompression surgery following vertebral fracture and used them for immunohistological characterization. By using mCT, we observed three dysmorphic bone patterns: osteolytic pattern with thinned trabecula of otherwise well-organized structures, osteoblastic pattern defined as accumulation of disorganized matrix deposited on pre-existing trabecula, and osteoblastic pattern with minimum residual trabecula and bone space dominated by accumulation of disorganized mineralized matrix. Comparing mCT data with patho/clinical parameters revealed a trend for higher bone density in males with larger PSA increase. Through histological sections, we observed that PC-affected bone, lacks collagen alignment structure, have a higher number of lacunae and increased amount of proteoglycans as decorin. Immunohistochemistry of biopsies revealed that PC-cells inside bone organize into two manners: i) glandular-like structures where cells maintain their polarization in the expression of prostate markers, ii) diffuse infiltrate that spreads along bone surfaces, with loss of cell polarity. These cells take direct contact with osteoblasts in the surface of trabecula. We define that PCBM are mostly composed by AR+ with some double negative cells. We did not observe neuroendocrine phenotype cells. PCBMs generate predominantly osteoblastic lesions that are characterized by high lacunar density, lack of collagen organization and elevated proteoglycan content. These structural changes are associated with the infiltration of PC cells that are mostly androgen-dependent but have lost their polarization and contact directly with osteoblasts, perhaps altering their function. These changes could be associated with lower mechanical properties that led to fracture and weakness of the PCBM affected bone


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_13 | Pages 65 - 65
1 Dec 2022
Rosario R Coleman R Arruda E Grant J
Full Access

The goal of this study was to identify the effect of mismatches in the subchondral bone surface at the native:graft interface on cartilage tissue deformation in human patellar osteochondral allografts (OCA). Hypothesis: large mismatches in the subchondral bone surface will result in higher stresses in the overlying and surrounding cartilage, potentially increasing the risk of graft failure. Nano-CT scans of ten 16mm diameter cadaveric patellar OCA transplants were used to develop simplified and 3D finite element (FE) models to quantify the effect of mismatches in the subchondral bone surface. The simplified model consisted of a cylindrical plug with a 16 mm diameter (graft) and a washer with a 16 mm inner diameter and 36 mm outer diameter (surrounding native cartilage). The thickness of the graft cartilage was varied from 0.33x the thickness of native cartilage (proud graft subchondral bone) to 3x the thickness of native cartilage (sunken graft subchondral bone; Fig. 1). The thickness of the native cartilage was set to 2 mm. The surface of the cartilage in the graft was matched to the surrounding native cartilage. A 1 MPa pressure was applied to the fixed patellar cartilage surface. Scans were segmented using Dragonfly and meshed using HyperMesh. FE simulations were conducted in Abaqus 2019. The simplified model demonstrated that a high stress region occurred in the cartilage at the sharp bony edge between the graft and native subchondral bone, localized to the region with thinner cartilage. A 20% increase in applied pressure occurs up to 50μm away from the graft edge (primarily in the graft cartilage) for grafts with proud subchondral bone but varies little based on the graft cartilage thickness. For grafts with sunken subchondral bone, the size of the high stress region decreases as the difference between graft cartilage and native cartilage thickness decreases (Fig. 2-4), with a 200 μm high stress region occurring when graft cartilage was 3x thicker than native cartilage (i.e., greater graft cartilage thickness produces larger areas of stress in the surrounding native cartilage). The 3D models reproduced the key features demonstrated in the simplified model. Larger differences between native and graft cartilage thickness cause larger high stress regions. Differences between the 3D and simplified models are caused by heterogeneous cartilage surface curvature and thickness. Simplified and 3D FE analysis confirmed our hypothesis that greater cartilage thickness mismatches resulted in higher cartilage stresses for sunken subchondral bone. Unexpectedly, cartilage stresses were independent of the cartilage thickness mismatch for proud subchondral bone. These FE findings did not account for tissue remodeling, patient variability in tissue mechanical properties, or complex tissue loading. In vivo experiments with full-thickness strain measurements should be conducted to confirm these findings. Mismatches in the subchondral bone can therefore produce stress increases large enough to cause local chondrocyte death near the subchondral surface. These stress increases can be reduced by (a) reducing the difference in thickness between graft and native cartilage or (b) using a graft with cartilage that is thinner than the native cartilage. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 132 - 132
1 Apr 2019
Louth SET Nai K Eisenstein N Cox SC
Full Access

Aseptic loosening is the most common cause of failure in load bearing orthopaedic implants. This is most often attributed to stress shielding, which is caused by a mismatch in mechanical properties between the implant and bone, predominantly stiffness. The implant causes a redistribution of the forces through the bone leading to localised tissue resorption in low stress areas and over time loosening of the implant. To address this, the implant design may be modified to introduce porous structures that reduced overall stiffness. Conventional methods of creating porous structures include the space holder method and gas foaming, although these allow control of the pore size and volume fraction, the position of the voids is random and potentially non-uniform, creating unpredictable mechanical properties. Using additive manufacture predictable porous lattice structures can be built. Two methods for creating lattice structure are explored here: controlled stochastic lattices, and layers of repeating unit cells. Due to the predictable nature of these design methods the mechanical properties can be tailored to suit the needs of the implants. In addition to mechanical optimisation the porous lattice structures can be optimised for osseointegration properties. The ability of the tissue to grow into the implant are affected by; the size of the pores, how interconnected the pores are, the overall void fraction (porosity), the shape and roughness of the pores, and whether the structure is coated. Although additive manufacture allows great design freedoms, there are also some manufacturing constraints to consider including resolution which is determined by powder and laser spot size, and strut angle since these cannot be too close to horizontal or they will collapse during the build unless supported. This preliminary work uses Finite Element Analysis to model the compressive properties of lattice structures with different design parameters, with the intention to optimise for mechanical, osseointegration and manufacturability properties. Cylinders of the lattice structures were generated in Simpleware ScanIP (Synopsys, Exeter, UK) and their compression was modelled in Ansys Workbench 18.2 (Canonsburg, PA, USA) in accordance with ISO 13314. Stress distributions for each lattice structure were produced which showed the stochastic lattice did not undergo banded deformation unlike the repeating unit cell based lattices. Future work will physically test the lattices and feed that data back into the model for further optimisation. Other relevant mechanical testing will be modelled and performed in order to choose the optimal lattice design for future implants


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 84 - 84
1 Jul 2020
Chow D Qin L Wang J Yang K Wan P
Full Access

Patellar fractures account for approximately 1% of all fractures. Open reduction and internal fixation is recommended to restore extensor continuity and articular congruity. However, complications such as nonunion and symptomatic hardware, still exist. Furthermore, there is a risk of re-fracturing of the healed bone during the removal of the implants. Magnesium (Mg), a biodegradable metal, has elastic moduli and compressive yield strength that are comparable to those of natural bone. Our previous study showed that released Mg ions enhanced fracture healing. However, Mg-based implants degrade rapidly after implantation and lead to insufficient mechanical strength to support the fracture. Microarc oxidation (MAO) is a metal surface coating that reduces corrosion. We hypothesized that Mg pins, with or without MAO, would enhance fracture healing radiologically, mechanically, and histologically, while MAO would decrease degradation of Mg pins. Patellar fracture was performed on forty-eight 18-week-old female New Zealand White rabbits according to established protocol. Briefly, the patella is osteotomized transversely and a tunnel (1.1mm) was drilled longitudinally through the two bone fragments. A pin (1 mm, stainless steel, Mg, or MAO-Mg) was inserted into the tunnel. The reduced construct was stabilized with a figure-of-eight band wire (⊘ 0.6 mm stainless steel wire). Cast immobilization was applied for 6 weeks. The rabbits were euthanized at week 8 and 12 post-operation. Microarchitecture and mechanical properties of the repaired patella were analyzed with microCT and tensile testing respectively. Histological sections of the repaired patella were stained. To evaluate the effect of the MAO treatment on degradation rate of Mg pin, the volume of the Mg pins in the patella was measured with microCT. At week 8, both Mg and Mg-MAO showed higher ratio of bone volume to tissue volume (BV/TV) than the control while there was no significant different between Mg and Mg-MAO. At week 12, Control, Mg, and Mg-MAO groups showed enlarged patella when compared to the normal patella. Tissue volume (TV) and bone volume (BV) of the patella in Mg and Mg-MAO were larger than those in the Control group. However, the Control had higher ratio of bone volume to tissue volume (BV/TV), TV density, and BV density than Mg and Mg-MAO. Tensile testing showed that the mechanical properties of the repaired patella (failure load, stiffness, ultimate strength, and energy-to-failure) of Mg and Mg-MAO were higher than that of the control at both week 8 and week 12. Histological analysis showed that there was significant new bone formation in the Mg and Mg-MAO group compared with the Control group at week 8 and 12. The degradation rate of the MAO-coated Mg pins was significantly slower than those without MAO at week 8 but no significant difference was detected at week 12. Mechanical, microarchitectural, and histological assessments showed that Mg pins, with or without MAO, enhanced fracture healing of the repaired patella compared to the Control. MAO treatment enhanced the corrosion resistance of the Mg pins at the early time point


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_2 | Pages 105 - 105
1 Jan 2016
Kim K
Full Access

Purpose. The purpose of this study is to analyse regional differences in the microstructural and mechanical properties of the distal femur depending on osteoarthritic changes using micro-images based on finite element analysis. Materials and Methods. Distal femur specimens were obtained from ten donors composed of 10 women with OA (mean age of 65 years, ranging from 53 to 79). As controls, the normal distal femur was sampled from age and gender matched donors consisting of 10 women(mean age of 67 years, ranging from 58 to 81). The areas of interest were six regions of the condyles of the femur(Lateral-Anterior, Middle, Posterior; Medial=Anterior, Middle, Posterior). A total of 20 specimens were scanned using the micro-CT system. Micro-CT images were converted to micro-finite element model using the mesh technique, and micro-finite element analysis was then performed for assessment of the mechanical properties. Results. Trabecular bones from the distal femur in control and OA groups exhibited different microstructural and mechanical properties in the same region. BV/TV, Tb.N, Tb.S and Yield strength were different between LA and MMsignificantly (p=0.005). In control group, the lateral anterior region of the distal femur reflected subchondral trabecular remodeling, while in advanced OA group, the medial middle region showed prominent changes in the microstructural and mechanical properties. Conclusion. The authors concluded that with aging and the progress of primary OA, changes of patello-femoral reaction force induced subchondral trabecular changes of the anterolateral region initially, and then progressed to the medial middle and posterior region in advanced OA


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_3 | Pages 1 - 1
1 Feb 2017
Abdelgaied A Fisher J Jennings L
Full Access

Introduction. The input mechanical properties of knee replacement bearing materials, such as elastic modulus and Poisson's ratio, significantly contribute to the accuracy of computational models. They should therefore be determined from independent experimental studies, under similar test conditions to the clinical and experimental conditions, to provide reliability to the models. In most cases, the reported values in the literature for the elastic modulus and Poisson's ratio of the bearing materials have been measured under tensile test conditions, in contrast to the compressive operating conditions of the total knee replacements (TKR). This study experimentally determined the elastic modulus and Poisson's ratio of conventional and moderately cross-linked ultra-high molecular weight polyethylene (UHMWPE) under compressive test conditions. These material parameters will be inputs to future computational models of TKR. Materials/Methods. To determine the Poisson's ratio of the conventional and moderately cross-linked UHMWPE, contact areas of 12mm diameter cylindrical specimens of 10.2mm length were measured experimentally under a compressive displacement of 1mm, at a strain rate of 12mm/min that was held for 10minutes. A computational model was developed in Abaqus, 6.14–1, to simulate this experimental test assuming different values for the Poisson's ratio of the UHMWPE cylindrical specimens. The curve fitted relationship between the computationally predicted contact area and Poisson's ratio was used to calculate the Poisson's ratio of the UHMWPE specimens, using the experimentally measured contact areas. Using a similar approach, the equivalent elastic modulus of the UHMWPE was calculated using the computationally calculated curve fitted contact area-elastic modulus relationship, from the computational simulation of a ball-on-flat compression test, and the experimentally measured contact area from a ball-on-flat dynamic compression test. This experiment used 10mm thick UHMWPE flat specimens against a 63.5mm rigid ball, under a compressive dynamic sinusoidal loading of 250N average load, and 6000 cycles. The applied test conditions maintained the stress level within the reported range for the TKR. Results. The predicted maximum contact stress was 26 and 35 [MPa] for the conventional and moderately cross-linked UHMWPE respectively. The measured Poisson's ratio was 0.33±0.04 (mean ± 95% confidence interval (CI), n=5) and 0.32±0.08 (mean ± 95% CI, n=3) for conventional and moderately cross-linked UHMWPE respectively. The corresponding values for the equivalent elastic modulus were 365±31 and 553±51 [MPa] (mean ± 95% CI, n=3) respectively (Fig.1). Discussion. The Poisson's ratios and elastic moduli for the conventional and moderately cross-linked UHMWPE materials were more than 20% lower than values reported in literature that have been measured under tensile test conditions [1–3]. Computational wear models adopting mechanical properties of the bearing materials delivered under more realistic compressive loading conditions are more appropriate. Conclusion. The current study presented a reverse engineering approach to characterise the mechanical properties of conventional and moderately cross-linked UHMWPE for TKR bearing materials, under realistic compressive test conditions. The measured mechanical properties, were lower than that reported in literature under tensile loading conditions, and should be adopted in future computational models of TKR for a more realistic and robust virtual modelling platform


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 176 - 176
1 Sep 2012
Simpson D Traynor A Collins S
Full Access

INTRODUCTION. Wear induced osteolysis, material property degradation and oxidation remain a concern in cobalt chrome on polyethylene THR. ECIMA is a cold-irradiated, mechanically annealed, vitamin E blended HXLPE developed to maintain mechanical properties, minimise wear and improve long-term oxidation resistance. This study aimed to compare the in-vitro wear rate and mechanical properties of three different acetabular liners; UHMWPE, HXLPE and ECIMA. METHODS. Twelve liners (Corin, UK) underwent a 3 million cycle (mc) hip simulation. Three UHMWPE (GUR1050, Ø32 mm, γ sterilised), three HXLPE (GUR1020, Ø40 mm, 75 kGy γ, EtO sterilised) and six ECIMA (0.1 wt% vitamin E GUR1020, Ø40 mm, 120 kGy γ, mechanically annealed, EtO sterilised) liners articulated against CoCrMo femoral heads (Corin, UK). Wear testing was performed in accordance with ISO 14242 parts 1 and 2, in calf serum, with a maximum force of 3.0 kN and at a frequency of 1 Hz. Volumetric wear rate was determined gravimetrically. ASTM D638 type V specimens were machined from ECIMA material for uniaxial tension testing. Ultimate tensile strength (UTS), yield strength and elongation values were measured. These values were compared to mechanical data available for the other material types. Following completion of the ECIMA wear testing, three of the tested liners were cut in half. One half of each was subject to accelerated ageing in accordance with ASTM F2003-02, while the other half was tested as received. Each liner half was cross-sectioned and a microtome was used to section 200μm thick slices from each cross-section. Oxidation analysis was performed using a Fourier Transform Infra-red technique in accordance with ASTM F2102-01 throughout the thickness of each liner half. Average oxidation indices for each sample were determined. RESULTS. The reduction in wear rate for the ECIMA liners compared to the UHMWPE and HXLPE liners was 95 % and a 83 % respectively. There was an increase in UTS, yield strength and percent elongation of 45%, 16% and 32% respectively, for unaged ECIMA compared to HXLPE. Following ageing of the ECIMA samples, there was minimal change in all three mechanical properties. Importantly, the mechanical properties were not substantially degraded and were more comparable to conventional UHMWPE than HXLPE. Further to this, following an aggressive ageing protocol, the ECIMA material maintains the mechanical properties of the unaged condition. All of the oxidation values for the wear tested ECIMA liners, before and after ageing, and the aged, untested ECIMA samples were negative, which shows oxidation levels below the level of detection throughout the thickness of the samples. This indicates a high level of through-thickness oxidation resistance for the ECIMA specimens even after being subject to an aggressive ageing protocol and cyclic loading. DISCUSSION. These in-vitro wear results indicate that ECIMA is a very low wearing material with the potential to reduce wear related osteolysis in-vivo. Importantly, the mechanical properties were generally maintained unlike the degradation found in many modified polyethylene materials and were more comparable to UHMWPE than HXLPE. These properties make ECIMA a promising next generation bearing material


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_7 | Pages 8 - 8
1 Apr 2017
Engh C
Full Access

Do we need new polyethylene? Is there a clinical problem with first generation crosslinked polyethylene (XLPE)? Are we being duped into believing that doped polyethylene will solve a problem?. Clinical failures of polyethylene bearing total hip replacements are related to wear and the mechanical properties of the polyethylene. Wear is primarily related to crosslinking. Wear failures are secondary to periprosthetic osteolysis while mechanical failure causes cracking of thin polyethylene. Use of large femoral heads that reduce dislocation may increase wear and mechanical failure in the second decade of XLPE use. There is no question that XLPE has reduced 2-dimensional (2D) head penetration, volumetric penetration and periprosthetic osteolysis with traditional 28 mm head sizes. Reported 2D penetration rates are 0.03–0.07 mm/year and clinically important polyethylene wear induced osteolysis is nonexistent. However, larger heads with the same 2D head penetration will generate more volumetric debris and could cause osteolysis. There is no question that retrieved XLPE components have low levels of oxidation at the time of explant. While this is unexpected, the levels are well below levels reported with traditional polyethylene. It remains to be seen if these levels of oxidation will cause mechanical failures. Currently available versions of polyethylene have focused on eliminating oxidation induced mechanical property reduction and not additional wear reduction. This is accomplished with Vitamin E doping or blending. While the local effects of Vitamin E polyethylene particles at the cellular level have been studied the clinical effect of these chemically new particles remains to be seen. This author believes that long term volumetric wear with large head size is a greater concern than reduced mechanical properties secondary to in-vivo oxidation. New polyethylene development needs to focus on additional wear reduction. Can we afford to pay more for a new polyethylene in a value based healthcare environment?