Advertisement for orthosearch.org.uk
Results 1 - 3 of 3
Results per page:
Bone & Joint Research
Vol. 11, Issue 4 | Pages 189 - 199
13 Apr 2022
Yang Y Li Y Pan Q Bai S Wang H Pan X Ling K Li G

Aims. Treatment for delayed wound healing resulting from peripheral vascular diseases and diabetic foot ulcers remains a challenge. A novel surgical technique named ‘tibial cortex transverse transport’ (TTT) has been developed for treating peripheral ischaemia, with encouraging clinical effects. However, its underlying mechanisms remain unclear. In the present study, we explored the potential biological mechanisms of TTT surgery using various techniques in a rat TTT animal model. Methods. A novel rat model of TTT was established with a designed external fixator, and effects on wound healing were investigated. Laser speckle perfusion imaging, vessel perfusion, histology, and immunohistochemistry were used to evaluate the wound healing processes. Results. Gross and histological examinations showed that TTT technique accelerated wound closure and enhanced the quality of the newly formed skin tissues. In the TTT group, haematoxylin and eosin (H&E) staining demonstrated a better epidermis and dermis recovery, while immunohistochemical staining showed that TTT technique promoted local collagen deposition. The TTT technique also benefited to angiogenesis and immunomodulation. In the TTT group, blood flow in the wound area was higher than that of other groups according to laser speckle imaging with more blood vessels observed. Enhanced neovascularization was seen in the TTT group with double immune-labelling of CD31 and α-Smooth Muscle Actin (α-SMA). The number of M2 macrophages at the wound site in the TTT group was also increased. Conclusion. The TTT technique accelerated wound healing through enhanced angiogenesis and immunomodulation. Cite this article: Bone Joint Res 2022;11(4):189–199


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_9 | Pages 11 - 11
16 May 2024
Kendal A Brown R Loizou C Rogers M Sharp R Carr A
Full Access

Tendinopathy can commonly occur around the foot and ankle resulting in isolated rupture, debilitating pain and degenerative foot deformity. The pathophysiology and key cells involved are not fully understood. This is partly because the dense collagen matrix that surrounds relatively few resident cells limits the ability of previous techniques to identify and target those cells of interest. In this study, we apply novel single cell RNA sequencing (CITE-Seq) techniques to healthy and tendinopathic foot/ankle tendons. For the first time we have identified multiple sub-populations of cells in human tendons. These findings challenge the view that there is a single principal tendon cell type and open new avenues for further study. Healthy tendon samples were obtained from patients undergoing tendon transfer procedures; including tibialis posterior and FHL. Diseased tendon samples were obtained during debridement of intractable Achilles and peroneal tendinopathy, and during fusion of degenerative joints. Single cell RNA sequencing with surface proteomic analysis identified 10 sub-populations of human tendon derived cells. These included groups expressing genes associated with fibro-adipogenic progenitors (FAPs) as well as ITGA7+VCAM1- recently described in mouse muscle but, as yet, not human tendon. In addition we have identified previously unrecognised sub-classes of collagen type 1 associated tendon cells. Each sub-class expresses a different set of extra-cellular matrix genes suggesting they each play a unique role in maintaining the structural integrity of normal tendon. Diseased tendon harboured a greater proportion of macrophages and cytotoxic lymphocytes than healthy tendon. This inflammatory response is potentially driven by resident tendon fibroblasts which show increased expression of pro-inflammatory cytokines. Finally, identification of a previously unknown sub-population of cells found predominantly in tendinopathic tissue offers new insight into the underlying pathophysiology. Further work aims to identify novel proteins targets for possible therapeutic pathways


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 7 | Pages 907 - 914
1 Jul 2009
Koivu H Kohonen I Sipola E Alanen K Vahlberg T Tiusanen H

Between 2002 and 2008, 130 consecutive ankles were replaced with an hydroxyapatite (HA) and titanium-HA-coated Ankle Evolutive System total ankle prosthesis. Plain radiographs were analysed by two independent observers. Osteolytic lesions were classified by their size and location, with cavities > 10 mm in diameter considered to be ‘marked’. CT scanning was undertaken in all patients with marked osteolysis seen on the plain radiographs.

Osteolytic lesions were seen on the plain films in 48 (37%) and marked lesions in 27 (21%) ankles. The risk for osteolysis was found to be 3.1 (95% confidence interval 1.6 to 5.9) times higher with implants with Ti-HA porous coating.

Care should be taken with ankle arthroplasty until more is known about the reasons for these severe osteolyses.