Introduction. The vascular anatomy of the femoral head and neck has been previously reported, with the primary blood supply attributed to the deep branch of the Medial Femoral Circumflex Artery (MFCA). This understanding has led to development of improved techniques for surgical hip dislocation for multiple intra-capsular hip procedures including Hip Resurfacing Arthroplasty (HRA). However, there is a lack of information in the literature on quantitative analysis of the contributions of the Lateral Femoral Circumflex Artery (LFCA) to femoral head and neck. Additionally, there is a lack of detailed descriptions in the literature of the anatomic course of the LFCA from its origin to its terminal branches. Materials & Methods. Twelve fresh-frozen human pelvic cadaveric specimens were studied (mean age 54.3 years, range 28–69). One hip per specimen was randomly assigned as the experimental hip, with the contralateral used as a control. Bilateral vascular dissection was performed to cannulate the
Introduction. The debate regarding the importance of preserving the blood supply to the femoral head (FH) and neck during hip resurfacing arthroplasty (HRA) is ongoing. Several surgeons continue to advocate for the preservation of the blood supply to the resurfaced heads for both the current HRA techniques and more biologic approaches for FH resurfacing. Despite alternative blood-preserving approaches for HRA, many surgeons continue to use the posterior approach (PA) due to personal preference and comfort. It is commonly accepted that the PA inevitably damages the deep branch of the medial femoral circumflex artery (MFCA). This study seeks to evaluate and measure the anatomical course of the ascending and deep branch of the
Introduction. Precise knowledge of the Femoral Head (FH) arterial supply is critical to avoid FH avascular necrosis following open and arthroscopic intra-capsular surgical procedures about the hip. The Medial Femoral Circumflex Artery (MFCA) provides the primary FH vascular contribution. Distribution of vascular foramina at the Femoral Head-Neck Junction (FHNJ) has been reported previously using an imaginary clock face. However, no quantitative information exists on the precise Capsular Insertion (CI) and intra-capsular course of the
Introduction:. A surgical hip dislocation provides circumferential access to the femoral head and is essential in the treatment pediatric and adult hip disease. Iatrogenic injury to the femoral head blood supply during a surgical may result in the osteonecrosis of the femoral head. In order to reduce vessel injury and incidence of AVN, the Greater Trochanteric Osteotomy (GTO) was developed and popularized by Ganz. The downside of this approach is the increased morbidity associated with the GTO including non-union in 8% and painful hardware requiring removal in 20% of patients. (reference) Recent studies performed at our institution have mapped the extra-osseous course of the medial femoral circumflex artery and provide surgical guidelines for a vessel preserving posterolateral approach. In this cadaveric model using Gadolinium enhanced MRI, we investigate whether standardized alterations in the postero-lateral surgical approach may reliably preserve femoral head vascularity during a posterior surgical hip dislocation. Methods:. In 8 cadaveric specimens the senior author (ES) performed a surgical hip dislocation through the posterolateral approach with surgical modifications designed to protect the superior and inferior retinacular arteries. In every specimen the same surgical alterations were made using a ruler: the Quadratus Femoris myotomy occurred 2.5 cm off its trochanteric insertion, the piriformis tenotomy occurred at its insertion and extended obliquely leaving a 2 cm cuff of conjoin tendon (inferior gemellus), and the Obturator Externus (OE) was myotomized 2 cm off its trochanteric insertion. (Figure 1) For the capsulotomy, the incision started on the posterior femoral neck directly beneath the cut obturator externus tendon and extending posteriorly to the acetabulum. Superior and inferior extensions of the capsulotomy ran parallel to the acetabular rim creating a T-shaped capsulotomy. After the surgical dislocation was complete, the medial femoral circumflex artery (MFCA) was cannulated and Gadolinium-enhanced MRI performed in order to assess intra-osseous femoral head perfusion and compared to the gadolinium femoral head perfusion of the contra-lateral hip as a non-operative control. Gross-dissection after polyurethane latex injection in the cannulated