Aims. People with severe, persistent low back pain (LBP) may be offered
Aims. Lumbar fusion is known to reduce the variation in pelvic tilt
between standing and sitting. A flexible lumbo-pelvic unit increases
the stability of total hip arthroplasty (THA) when seated by increasing
anterior clearance and acetabular anteversion, thereby preventing
impingement of the prosthesis. Lumbar fusion may eliminate this protective
pelvic movement. The effect of lumbar fusion on the stability of
total hip arthroplasty has not previously been investigated. Patients and Methods. The Medicare database was searched for patients who had undergone
THA and spinal fusion between 2005 and 2012. PearlDiver software
was used to query the database by the International Classification
of Diseases, 9th Revision, Clinical Modification (ICD-9-CM) procedural
code for primary THA and
Aims. As the population ages and the surgical complexity of lumbar spinal surgery increases, the preoperative stratification of risk becomes increasingly important. Understanding the risks is an important factor in decision-making and optimizing the preoperative condition of the patient. Our aim was to determine whether the modified five-item frailty index (mFI-5) and nutritional parameters could be used to predict postoperative complications in patients undergoing simple or complex
The aim of this study was to determine whether
obesity affects pain, surgical and functional outcomes following lumbar
spinal fusion for low back pain (LBP). A systematic literature review and meta-analysis was made of
those studies that compared the outcome of lumbar spinal fusion
for LBP in obese and non-obese patients. A total of 17 studies were
included in the meta-analysis. There was no difference in the pain
and functional outcomes.
Aims. Total hip arthroplasty (THA) patients undergoing or having a prior
Chronic low back pain (CLBP) is the most common cause of disability worldwide, and
Introduction. There is growing evidence that patients with
Biphasic calcium phosphate (BCP) with a characteristic needle-shaped submicron surface topography (MagnetOs) has attracted much attention due to its unique bone-forming ability which is essential for repairing critical-size bone defects such as those found in the posterolateral spine. Previous in vitro and ex-vivo data performed by van Dijk LA and Yuan H demonstrated that these specific surface characteristics drive a favorable response from the innate immune system. This study aimed to evaluate and compare the in vivo performance of three commercially-available synthetic bone grafts, (1) i-FACTOR Putty. ®. , (2) OssDsign. ®. Catalyst Putty and (3) FIBERGRAFT. ®. BG Matrix, with that of a novel synthetic bone graft in a clinically-relevant instrumented sheep posterolateral
Introduction:. Several reports showed superior fusion rates, as high as 100%, using rhBMP-2 with ALIF cages. This has led to the widespread off-label use of rhBMP-2 in several other lumbar fusion procedures. There is paucity of reports analysing the clinic-radiological outcome of using rhBMP-2 to promote bone union in cases of symptomatic pseudoarthosis following
Background: The major problem achieving
Introduction. Patients undergoing primary total hip arthroplasty (THA) with prior
Introduction This review evaluates the clinical outcomes and complications of
Aims: To evaluate the outcome of surgery in patients with lumbar spine degenerative disease or isthmic spon-dylolisthesis. Methods:
Chronic pain at the donor site was reported by 25% of 290 patients who had undergone anterior
Purpose: A lack of consensus regarding the radiologic criteria to diagnose spinal non-union limits inferences from clinical research. This systematic review aimed to examine the spectrum of radiologic investigations used to assess
Introduction. Both intra- and post-operative radiographs are traditionally obtained after instrumented lumbar spinal surgery; however the clinical advantage of routine post operative images has not been demonstrated. Aim. To explore the usefulness of routine pre-discharge postoperative radiographs in patients undergoing instrumented spinal surgery. Methodology. Patients (n = 124) who underwent a
The success of
Objectives. Loss of motion following spine segment fusion results in increased strain in the adjacent motion segments. However, to date, studies on the biomechanics of the cervical spine have not assessed the role of coupled motions in the lumbar spine. Accordingly, we investigated the biomechanics of the cervical spine following cervical fusion and lumbar fusion during simulated whiplash using a whole-human finite element (FE) model to simulate coupled motions of the spine. Methods. A previously validated FE model of the human body in the driver-occupant position was used to investigate cervical hyperextension injury. The cervical spine was subjected to simulated whiplash exposure in accordance with Euro NCAP (the European New Car Assessment Programme) testing using the whole human FE model. The coupled motions between the cervical spine and lumbar spine were assessed by evaluating the biomechanical effects of simulated cervical fusion and lumbar fusion. Results. Peak anterior longitudinal ligament (ALL) strain ranged from 0.106 to 0.382 in a normal spine, and from 0.116 to 0.399 in a fused cervical spine. Strain increased from cranial to caudal levels. The mean strain increase in the motion segment immediately adjacent to the site of fusion from C2-C3 through C5-C6 was 26.1% and 50.8% following single- and two-level cervical fusion, respectively (p = 0.03, unpaired two-way t-test). Peak cervical strains following various lumbar-fusion procedures were 1.0% less than those seen in a healthy spine (p = 0.61, two-way ANOVA). Conclusion. Cervical arthrodesis increases peak ALL strain in the adjacent motion segments. C3-4 experiences greater changes in strain than C6-7. Lumbar fusion did not have a significant effect on cervical spine strain. Cite this article: H. Huang, R. W. Nightingale, A. B. C. Dang. Biomechanics of coupled motion in the cervical spine during simulated whiplash in patients with pre-existing cervical or
As the population ages, the prevalence of degenerative spinal conditions is estimated to increase. With soaring healthcare costs, we must be vigilant in our accountability for proper resource allocation to ensure universal access. Significant recent increases in lumbar fusion rates have been observed in the US. Less is known regarding the Canadian experience. Our objective was to evaluate recent trends in lumbar fusion and determine how surgeon factors influence reoperation for spinal stenosis (SS) surgery. Longitudinal follow-up study of lumbar surgical procedures for SS using administrative databases. Data was gathered on patient-hospital encounters from April 1, 1995 to December 31, 2001. We analyzed trends in spinal fusion. Index procedures (decompressions or fusions) and surgeon variables, such as specialty (orthopaedics, neurosurgery) and volume (above or below thirty cases/year), were selected as predictors of patient reoperation for SS. Adjustments were made for age, gender, and comorbidity. Reoperation rates were evaluated at six weeks, one and two years and until maximal follow-up. 6128 patients were identified (4200 decompressions and 1928 fusions). Proportionally more fusions were performed over the study period when compared to decompressions (1:2.6 in 1995 versus 1:1.5 in 2001). Orthopaedic specialty and higher surgical volume were associated with increased proportion of fusions (p<
0.0001). Reoperation rate was higher for decompressions at two years (OR 1.4) but not at long-term follow-up to ten years. Surgeon specialty had no impact on reoperation rates. Lower surgical volume demonstrated a higher reoperation rate after adjusting for specialty (Hazard Ratio 1.28). Rates of
Purpose: It is widely agreed that fusion of a spinal segment modifies the mechanical behaviour of sub-jacent vertebrae. The mean centre of rotation (MCR) is defined to study changes in the mechanical behaviour at junctions. This parameter describes the relative movement of an object moving from one position to another. The purpose of this study was to describe changes in the position of the MCR after posterolateral