Advertisement for orthosearch.org.uk
Results 1 - 20 of 121
Results per page:
Bone & Joint Open
Vol. 4, Issue 9 | Pages 668 - 675
3 Sep 2023
Aubert T Gerard P Auberger G Rigoulot G Riouallon G

Aims. The risk factors for abnormal spinopelvic mobility (SPM), defined as an anterior rotation of the spinopelvic tilt (∆SPT) ≥ 20° in a flexed-seated position, have been described. The implication of pelvic incidence (PI) is unclear, and the concept of lumbar lordosis (LL) based on anatomical limits may be erroneous. The distribution of LL, including a unusual shape in patients with a high lordosis, a low pelvic incidence, and an anteverted pelvis seems more relevant. Methods. The clinical data of 311 consecutive patients who underwent total hip arthroplasty was retrospectively analyzed. We analyzed the different types of lumbar shapes that can present in patients to identify their potential associations with abnormal pelvic mobility, and we analyzed the potential risk factors associated with a ∆SPT ≥ 20° in the overall population. Results. ΔSPT ≥ 20° rates were 28.3%, 11.8%, and 14.3% for patients whose spine shape was low PI/low lordosis (group 1), low PI anteverted (group 2), and high PI/high lordosis (group 3), respectively (p = 0.034). There was no association between ΔSPT ≥ 20° and PI ≤ 41° (odds ratio (OR) 2.01 (95% confidence interval (CI)0.88 to 4.62), p = 0.136). In the multivariate analysis, the following independent predictors of ΔSPT ≥ 20° were identified: SPT ≤ -10° (OR 3.49 (95% CI 1.59 to 7.66), p = 0.002), IP-LL ≥ 20 (OR 4.38 (95% CI 1.16 to 16.48), p = 0.029), and group 1 (OR 2.47 (95% CI 1.19; to 5.09), p = 0.0148). Conclusion. If the PI value alone is not indicative of SPM, patients with a low PI, low lordosis and a lumbar apex at L4-L5 or below will have higher rates of abnormal SPM than patients with a low PI anteverted and high lordosis. Cite this article: Bone Jt Open 2023;4(9):668–675


The Bone & Joint Journal
Vol. 102-B, Issue 11 | Pages 1505 - 1510
2 Nov 2020
Klemt C Limmahakhun S Bounajem G Xiong L Yeo I Kwon Y

Aims. The complex relationship between acetabular component position and spinopelvic mobility in patients following total hip arthroplasty (THA) renders it difficult to optimize acetabular component positioning. Mobility of the normal lumbar spine during postural changes results in alterations in pelvic tilt (PT) to maintain the sagittal balance in each posture and, as a consequence, markedly changes the functional component anteversion (FCA). This study aimed to investigate the in vivo association of lumbar degenerative disc disease (DDD) with the PT angle and with FCA during postural changes in THA patients. Methods. A total of 50 patients with unilateral THA underwent CT imaging for radiological evaluation of presence and severity of lumbar DDD. In all, 18 patients with lumbar DDD were compared to 32 patients without lumbar DDD. In vivo PT and FCA, and the magnitudes of changes (ΔPT; ΔFCA) during supine, standing, swing-phase, and stance-phase positions were measured using a validated dual fluoroscopic imaging system. Results. PT, FCA, ΔPT, and ΔFCA were significantly correlated with the severity of lumbar DDD. Patients with severe lumbar DDD showed marked differences in PT with changes in posture; there was an anterior tilt (-16.6° vs -12.3°, p = 0.047) in the supine position, but a posterior tilt in an upright posture (1.0° vs -3.6°, p = 0.005). A significant decrease in ΔFCA during stand-to-swing (8.6° vs 12.8°, p = 0.038) and stand-to-stance (7.3° vs 10.6°,p = 0.042) was observed in the severe lumbar DDD group. Conclusion. There were marked differences in the relationship between PT and posture in patients with severe lumbar DDD compared with healthy controls. Clinical decision-making should consider the relationship between PT and FCA in order to reduce the risk of impingement at large ranges of motion in THA patients with lumbar DDD. Cite this article: Bone Joint J 2020;102-B(11):1505–1510


The Bone & Joint Journal
Vol. 102-B, Issue 8 | Pages 1003 - 1009
1 Aug 2020
Mononen H Sund R Halme J Kröger H Sirola J

Aims. There is evidence that prior lumbar fusion increases the risk of dislocation and revision after total hip arthroplasty (THA). The relationship between prior lumbar fusion and the effect of femoral head diameter on THA dislocation has not been investigated. We examined the relationship between prior lumbar fusion or discectomy and the risk of dislocation or revision after THA. We also examined the effect of femoral head component diameter on the risk of dislocation or revision. Methods. Data used in this study were compiled from several Finnish national health registers, including the Finnish Arthroplasty Register (FAR) which was the primary source for prosthesis-related data. Other registers used in this study included the Finnish Health Care Register (HILMO), the Social Insurance Institutions (SII) registers, and Statistics Finland. The study was conducted as a prospective retrospective cohort study. Cox proportional hazards regression and Kaplan-Meier survival analysis were used for analysis. Results. Prior lumbar fusion surgery was associated with increased risk of prosthetic dislocation (hazard ratio (HR) = 2.393, p < 0.001) and revision (HR = 1.528, p < 0.001). Head components larger than 28 mm were associated with lower dislocation rates compared to the 28 mm head (32 mm: HR = 0.712, p < 0.001; 36 mm: HR = 0.700, p < 0.001; 38 mm: HR = 0.808, p < 0.140; and 40 mm: HR = 0.421, p < 0.001). Heads of 38 mm (HR = 1.288, p < 0.001) and 40 mm (HR = 1.367, p < 0.001) had increased risk of revision compared to the 28 mm head. Conclusion. Lumbar fusion surgery was associated with higher rate of hip prosthesis dislocation and higher risk of revision surgery. Femoral head component of 32 mm (or larger) associates with lower risk of dislocation in patients with previous lumbar fusion. Cite this article: Bone Joint J 2020;102-B(8):1003–1009


The Bone & Joint Journal
Vol. 101-B, Issue 2 | Pages 198 - 206
1 Feb 2019
Salib CG Reina N Perry KI Taunton MJ Berry DJ Abdel MP

Aims. Concurrent hip and spine pathologies can alter the biomechanics of spinopelvic mobility in primary total hip arthroplasty (THA). This study examines how differences in pelvic orientation of patients with spine fusions can increase the risk of dislocation risk after THA. Patients and Methods. We identified 84 patients (97 THAs) between 1998 and 2015 who had undergone spinal fusion prior to primary THA. Patients were stratified into three groups depending on the length of lumbar fusion and whether or not the sacrum was involved. Mean age was 71 years (40 to 87) and 54 patients (56%) were female. The mean body mass index (BMI) was 30 kg/m. 2. (19 to 45). Mean follow-up was six years (2 to 17). Patients were 1:2 matched to patients with primary THAs without spine fusion. Hazard ratios (HR) were calculated. Results. Dislocation in the fusion group was 5.2% at one year versus 1.7% in controls but this did not reach statistical significance (HR 1.9; p = 0.33). Compared with controls, there was no significant difference in rate of dislocation in patients without a sacral fusion. When the sacrum was involved, the rate of dislocation was significantly higher than in controls (HR 4.5; p = 0.03), with a trend to more dislocations in longer lumbosacral fusions. Patient demographics and surgical characteristics of THA (i.e. surgical approach and femoral head diameter) did not significantly impact risk of dislocation (p > 0.05). Significant radiological differences were measured in mean anterior pelvic tilt between the one-level lumbar fusion group (22°), the multiple-level fusion group (27°), and the sacral fusion group (32°; p < 0.01). Ten-year survival was 93% in the fusion group and 95% in controls (HR 1.2; p = 0.8). Conclusion. Lumbosacral spinal fusions prior to THA increase the risk of dislocation within the first six months. Fusions involving the sacrum with multiple levels of lumbar involvement notably increased the risk of postoperative dislocation compared with a control group and other lumbar fusions. Surgeons should take care with component positioning and may consider higher stability implants in this high-risk cohort


The Bone & Joint Journal
Vol. 99-B, Issue 6 | Pages 759 - 765
1 Jun 2017
Eneqvist T Nemes S Brisby H Fritzell P Garellick G Rolfson O

Aims. The aims of this study were to describe the prevalence of previous lumbar surgery in patients who undergo total hip arthroplasty (THA) and to investigate their patient-reported outcomes (PROMs) one year post-operatively. Patients and Methods. Data from the Swedish Hip Arthroplasty Register and the Swedish Spine Register gathered from 2002 to 2013 were merged to identify a group of patients who had undergone lumbar surgery before THA (n = 997) and a carefully matched one-to-one control group. We investigated differences in the one-year post-operative PROMs between the groups. Linear regression analyses were used to explore the associations between previous lumbar surgery and these PROMs following THA. The prevalence of prior lumbar surgery was calculated as the ratio of patients identified with previous lumbar surgery between 2002 and 2012, and divided by the total number of patients who underwent a THA in 2012. Results. The prevalence of lumbar surgery prior to THA in 2012 was 3.5% (351 of 10 082). Linear regression analyses showed an association with more pain (B = 4.35, 95% confidence interval (CI) 2.57 to 6.12), worse EuroQol (EQ)-5D index, (B = -0.089, 95% CI -0.112 to -0.066), worse EQ VAS (B = -6.75, 95% CI -8.58 to -4.92), and less satisfaction (B = 6.04, 95% CI 4.05 to 8.02). Conclusion. Lumbar spinal surgery prior to THA is associated with less reduction of pain, worse health-related quality of life, and less satisfaction one year after THA. This is useful information to share in the decision-making process and may help establish realistic expectations of the outcomes of THA in patients who also have previously undergone lumbar spinal surgery. Cite this article: Bone Joint J 2017;99-B:759–65


The Bone & Joint Journal
Vol. 99-B, Issue 5 | Pages 585 - 591
1 May 2017
Buckland AJ Puvanesarajah V Vigdorchik J Schwarzkopf R Jain A Klineberg EO Hart RA Callaghan JJ Hassanzadeh H

Aims. Lumbar fusion is known to reduce the variation in pelvic tilt between standing and sitting. A flexible lumbo-pelvic unit increases the stability of total hip arthroplasty (THA) when seated by increasing anterior clearance and acetabular anteversion, thereby preventing impingement of the prosthesis. Lumbar fusion may eliminate this protective pelvic movement. The effect of lumbar fusion on the stability of total hip arthroplasty has not previously been investigated. Patients and Methods. The Medicare database was searched for patients who had undergone THA and spinal fusion between 2005 and 2012. PearlDiver software was used to query the database by the International Classification of Diseases, 9th Revision, Clinical Modification (ICD-9-CM) procedural code for primary THA and lumbar spinal fusion. Patients who had undergone both lumbar fusion and THA were then divided into three groups: 1 to 2 levels, 3 to 7 levels and 8+ levels of fusion. The rate of dislocation in each group was established using ICD-9-CM codes. Patients who underwent THA without spinal fusion were used as a control group. Statistical significant difference between groups was tested using the chi-squared test, and significance set at p < 0.05. Results. At one-year follow-up, 14 747 patients were found to have had a THA after lumbar spinal fusion (12 079 1 to 2 levels, 2594 3 to 7 levels, 74 8+ levels). The control group consisted of 839 004 patients. The dislocation rate in the control group was 1.55%. A higher rate of dislocation was found in patients with a spinal fusion of 1 to 2 levels (2.96%, p < 0.0001) and 3 to 7 levels (4.12%, p < 0.0001). Patients with 3 to 7 levels of fusion had a higher rate of dislocation than patients with 1 to 2 levels of fusion (odds ratio (OR) = 1.60, p < 0.0001). When groups were matched for age and gender to the unfused cohort, patients with 1 to 2 levels of fusion had an OR of 1.93 (95% confidence interval (CI) 1.42 to 2.32, p < 0.001), and those with 3 to 7 levels of fusion an OR of 2.77 (CI 2.04 to 4.80, p < 0.001) for dislocation. Conclusion. Patients with a previous history of lumbar spinal fusion have a significantly higher rate of dislocation of their THA than age- and gender-matched patients without a lumbar spinal fusion. Cite this article: Bone Joint J 2017;99-B:585–91


The Bone & Joint Journal
Vol. 100-B, Issue 10 | Pages 1275 - 1279
1 Oct 2018
Fader RR Tao MA Gaudiani MA Turk R Nwachukwu BU Esposito CI Ranawat AS

Aims. The purpose of this study was to evaluate spinopelvic mechanics from standing and sitting positions in subjects with and without femoroacetabular impingement (FAI). We hypothesize that FAI patients will experience less flexion at the lumbar spine and more flexion at the hip whilst changing from standing to sitting positions than subjects without FAI. This increase in hip flexion may contribute to symptomatology in FAI. Patients and Methods. Male subjects were prospectively enrolled to the study (n = 20). Mean age was 31 years old (22 to 41). All underwent clinical examination, plain radiographs, and dynamic imaging using EOS. Subjects were categorized into three groups: non-FAI (no radiographic or clinical FAI or pain), asymptomatic FAI (radiographic and clinical FAI but no pain), and symptomatic FAI (patients with both pain and radiographic FAI). FAI was defined as internal rotation less than 15° and alpha angle greater than 60°. Subjects underwent standing and sitting radiographs in order to measure spine and femoroacetabular flexion. Results. Compared with non-FAI controls, symptomatic patients with FAI had less flexion at the spine (mean 22°, . sd. 12°, vs mean 35°, . sd. 8°; p = 0.04) and more at the hip (mean 72°, . sd. 6°, vs mean 62°, . sd. 8°; p = 0.047). Subjects with asymptomatic FAI had more spine flexion and similar hip flexion when compared to symptomatic FAI patients. Both FAI groups also sat with more anterior pelvic tilt than control patients. There were no differences in standing alignment among groups. Conclusion. Symptomatic patients with FAI require more flexion at the hip to achieve sitting position due to their inability to compensate through the lumbar spine. With limited spine flexion, FAI patients sit with more anterior pelvic tilt, which may lead to impingement between the acetabulum and proximal femur. Differences in spinopelvic mechanics between FAI and non-FAI patients may contribute to the progression of FAI symptoms. Cite this article: Bone Joint J 2018;100-B:1275–9


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_5 | Pages 17 - 17
1 Jul 2020
Innmann M Merle C Phan P Beaulé P Grammatopoulos G
Full Access

Introduction. Patients with reduced lumbar spine mobility are at higher risk of dislocation after THA as their hips have to compensate for spinal stiffness. Therefore our study aimed to 1) Define the optimal protocol for identifying patients with mobile hips and stiff lumbar spines and 2) Determine clinical and standing radiographic parameters predicting high hip and reduced lumbar spine mobility. Methods. This prospective diagnostic cohort study followed 113 consecutive patients with end-stage hip osteoarthritis (OA) awaiting THA. Radiographic measurements were performed for the lumbar lordosis angle, pelvic tilt and pelvic-femoral angle on lateral radiographs in the standing, ‘relaxed-seated’ and ‘deep-seated’ (i.e. torso maximally leaning forward) position. A “hip user index” was calculated in order to quantify the contribution of the hip joint to the overall sagittal movement performed by the femur, pelvis and lumbar spine. Results. Radiographs in the relaxed-seated position had an accuracy of 56% (95%CI:46–65%) to detect patients with stiff lumbar spines, compared to a detected rate of 100% in the deep-seated position. The mean ‘hip user index’ was 63±12% and ten patients (9%) were hip users, having an index of 80% or more. A standing pelvic tilt of ≥18.5° was the only predictor for being a hip user with a sensitivity of 90% and specificity of 71% (AUC 0.83). Patients with a standing pelvic tilt ≥18.5° and an unbalanced spine with a flatback deformity had a 30xfold relative risk (95%-CI:4–226; p<0.001) of being a hip user. Conclusion. Patients awaiting THA and having high hip and reduced lumbar spine mobility can be screened for with lateral standing radiographs of the spinopelvic complex and a thorough clinical examination. If the initial screening is positive, radiographs in the deep-seated position allow for better identification of patients being ‘hip users’ compared to radiographs in the relaxed-seated position


The Bone & Joint Journal
Vol. 103-B, Issue 3 | Pages 486 - 491
1 Mar 2021
Di Martino A Bordini B Ancarani C Viceconti M Faldini C

Aims. Total hip arthroplasty (THA) patients undergoing or having a prior lumbar spine fusion (LSF) have an increased risk of mechanical complications. The aim of this registry-based, retrospective comparative cohort study is to assess the longer term survival of THA in patients who have undergone a LSF during a 17-year period (2000 to 2017). Methods. A registry-based population study was conducted on 679 patients who underwent both THA and LSF surgeries. Patients were identified from the regional arthroplasty data base and cross linked to patients with LSF from the regional hospital discharge database between 2000 and 2017. Demographic data, diagnosis leading to primary THA, primary implant survival, perioperative complications, number and causes of failure, and patients requiring revision arthroplasty were collated and compared. For comparison, data from 67,919 primary THAs performed during the same time time period were also retrieved and analyzed. Results. Patients undergoing THA and LSF showed homogeneous demographic data compared to those undergoing THA alone, but a significantly lower eight-year THA implant survival (96.7 vs 96.0, p = 0.024) was observed. Moreover, THA plus LSF patients showed increased incidence of mechanical complications in the first two years after THA surgery compared to THA alone patients. Conclusion. This registry-based population study shows that approximately 679 (1%) THA patients were subjected to LSF. Patients undergoing THA and LSF have an increased risk of mechanical complications with their THA and a slightly increased risk of revision arthroplasty. Cite this article: Bone Joint J 2021;103-B(3):486–491


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_12 | Pages 29 - 29
1 Oct 2019
Archibeck MJ Archibeck CJ Carothers JT Tripuraneni KR
Full Access

Introduction. There is growing evidence that patients with lumbar spine fusion are at greater risk for postoperative dislocation following total hip arthroplasty. The purpose of this study is to review one author's experience with the modified direct lateral approach in patients with prior or subsequent lumbar spine fusion and total hip arthroplasty. Methods. Our IRB approved clinical database was queried for all primary total hip arthroplasties performed by the senior author from 1/1/2004 to 12/31/2016. All were performed via a modified direct lateral approach. Of these 1902 hips (1656 patients), 59 were identified in our medical records as patients who had a prior spine fusion or a spine fusion following THA. The extent of fusion was identified and reported. Radiographs were reviewed for acetabular position (abduction and anteversion) and leg length discrepancies. Records were reviewed and patients were contacted to determine if there were dislocations. Results. Of the 59 patients with concomitant spine fusion and total hip arthroplasty, 47 had the fusion prior to THA and 12 following THA. All patients were seen in the office or contacted by phone for a mean follow up of 5.8 years (2 to 15 years)(3 deceased, 3 lost). The direct lateral approach was used in all cases and in no cases was a dual mobility, lipped liner, or constrained component used. Head size ranged from 32 to 40. There were no postoperative dislocations in any of these patients. Acetabular position was a mean 43.6 degrees abduction (range 30–50), and a mean anteversion of 23.7 degrees (range 17 – 34). Average postoperative LLD was 2.8mm long on operated side (range −2mm to + 12mm). Spine fusion extent was a mean 2.1 levels (range 1 – 9) with 15 that included the sacrum/pelvis. Discussion. As surgeons have become aware of the elevated risk of hip dislocation associated with spine fusion/stiffness, several approaches have been proposed to address this risk. Our findings suggest that using the modified direct lateral approach for primary total hip arthroplasty significantly reduces the risk of such a complication. For any tables or figures, please contact the authors directly


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_1 | Pages 74 - 74
1 Jan 2018
Padgett D Mayman D Jerabek S Esposito C Wright T Berliner J
Full Access

Variation in pelvic tilt during postural changes may affect functional alignment. The primary objective of this study was to quantify the changes in lumbo-pelvic-femoral alignment from sitting to standing in patients undergoing THA. 144 patients were enrolled. Standing and sitting radiographs using the EOS imaging system were analyzed preoperatively and 1-year postoperatively. Pelvic incidence (PI), lumbar lordosis (LL), sacral slope (SS), proximal femoral angle (PFA) and spine/femoroacetabular flexion were determined. 38 patients had multilevel DDD (26%). Following THA, patients sat with increased anterior pelvic tilt demonstrated by a significant increase in sitting lumbar lordosis (28° preop vs 35° postop; p<0.01) and sacral slope (18° vs 23°; p<0.01). Following THA, patients flexed less through their spines (preop 26° vs postop 19°; p<0.01) and more through their hips (femoroacetabular flexion) (preop 60° vs postop 67°; p<0.01) to achieve sitting position. Patients with multilevel DDD sat with less spine flexion (normal 22° vs spine 13°; p<0.01), less change in sacral slope (more relative anterior tilt) (17° vs 9°; p<0.01), and more femoroacetabular flexion (64° vs 71°; p<0.01). For the majority of patients after THA, a larger proportion of lumbo-pelvic-femoral flexion necessary to achieve a sitting position is derived from femoroacetabular flexion with an associated increase in anterior pelvic tilt and a decrease in lumbar spine flexion. These changes are more pronounced among patients with multilevel DDD. Surgeons may consider orienting the acetabular component with greater anteversion and inclination in patients identified preoperatively to have anterior pelvic tilt or significant DDD


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_12 | Pages 6 - 6
1 Oct 2019
Nessler JM Malkani AJ Sachdeva S Nessler JP Westrich GH Harwin SF Mayman DJ Jerabek SA
Full Access

Introduction. Patients undergoing primary total hip arthroplasty (THA) with prior lumbar spine fusion (LSF) are at high risk for instability with reported incidence of dislocation as high as 8.3%. The use of dual mobility cups in patients undergoing revision THA, another high risk group, has demonstrated decreased incidence of instability. Purpose of this study was to evaluate the risk of instability in patients undergoing primary THA with a history of prior LSF using dual mobility cups. Methods. This was a multi-center retrospective study with 93 patients undergoing primary THA using a dual mobility cup with prior history of instrumented LSF. The primary outcome investigated was instability. Secondary variables investigated included number of levels fused, approach, length of stay, and other complications. The minimum follow-up time was 1 year since the majority of dislocations occur during first year following the primary THA. Results. There were 56 females and 47 males with average age of 66 years (46–87) and average BMI of 30. Mean follow up was 31 months (range 12 – 124.2). Surgical approach included: posterior (63), direct lateral (15), anterior (11), direct superior (4). 44% had one level fusion, 29% with 2 levels, and 15% with 3 or more levels fused. There were no dislocations or infections in this study group. There was one intraoperative fracture and one DVT. Conclusions. Patients undergoing primary THA with prior LSF are a high risk group with an increased risk for instability due to the loss of normal spino-pelvic relationship. The use of dual mobility cups in a high risk group of patients in this study demonstrated excellent results with no incidence of dislocation. Despite the limitations in this study with varying approaches and multiple sites, the use of dual mobility cups to decrease the incidence of instability in patients with prior LSF appears promising. For any tables or figures, please contact the authors directly


Full Access

Osteoporosis can cause significant disability and cost to health services globally. We aim to compare risk fractures for both osteoporosis and fractures at the L1-L4 vertebrae (LV) and the neck of femurs (NOFs) in patients referred for DEXA scan in the North-West of England.

Data was obtained from 31546 patients referred for DEXA scan in the North-West of England between 2004 and 2011. Demographic data was retrospectively analysed using STATA, utilising chi-squared and t-tests. Logistical models were used to report odds ratios for risk factors included in the FRAX tool looking for differences between osteoporosis and fracture risk at the LV and NOFs.

In a study involving 2530 cases of LV fractures and 1363 of NOF fractures, age was significantly linked to fractures and osteoporosis at both sites, with a higher risk of osteoporosis at NOFs compared to LV. Height provided protection against fractures and osteoporosis at both sites, with a more pronounced protective effect against osteoporosis at NOFs. Weight was more protective for NOF fractures, while smoking increased osteoporosis risk with no site-specific difference. Steroids were unexpectedly protective for fractures at both sites, with no significant difference, while alcohol consumption was protective against osteoporosis at both sites and associated with increased LV fracture risk. Rheumatoid arthritis increased osteoporosis risk in NOFs and implied a higher fracture risk, though not statistically significant compared to LV. Results summarised in Table 1.

Our study reveals that established osteoporosis and fracture risk factors impact distinct bony sites differently. Age and rheumatoid arthritis increase osteoporosis risk more at NOFs than LV, while height and steroids provide greater protection at NOFs. Height significantly protects LV fractures, with alcohol predicting them. Further research is needed to explore risk factors’ impact on additional bony sites and understand the observed differences’ pathophysiology.

For any figures or tables, please contact the authors directly.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_12 | Pages 23 - 23
1 Jun 2017
Parker S Grammatopoulos G Dhaliwal K Pradhan R Marshall R Andrade A
Full Access

Degenerative hip and spine pathologies often co-exist, as Hip-Spine-Syndrome (HSS). Many patients eventually need surgery in both hip (THR) and spine [decompression-spinal-arthrodesis (DSA)]. This case-control study aims to determine whether the presence of a DSA compromised THR outcome and whether outcome of THR is better if performed prior to- (THR-1st) or after- DSA (THR-2nd).

This is a single centre, multi-surgeon, retrospective, case-control study. Of the 748 patients that underwent DSA between 2004–15, 43 patients (54 THRs) have also had a 1° THR(s) at our unit and formed the cases. Thirty-two THRs were performed prior to the DSA (THR-1st) and 22 were done following the DSA (THR-2nd). Most cases had either 1- (n=3) or 2-level (n=20) DSA. The most common DSA level was L4/5 (n=23). The mean THR-DSA interval was 3.6 years. Controls were patients (n=67) without DSA or previous spinal surgery, that had a THR in our unit over the same study period matched for age, gender and type of THR implanted.

Patient Reported Outcome Measures (PROMs) were obtained using the Oxford-Hip- and Harris-Hip-Scores (OHS/HHS), with the difference between post- and pre-operative scores defined as Δ. Outcome was compared between Cases and Controls and between THR-1st and THR-2nd Groups. Outcome measures included complications, revisions, PROMs and cup orientations achieved.

The mean age at THR was 67 years old (SD: 11) and most patients were female (n=82, 68%). The mean cup inclination and anteversion angles were 41° (SD:8) and 21° (SD:8). At a mean follow-up of 6 years, the OHS improved from OHSpre:16 (SD: 7) to OHSfu:41 (SD:10) and the HHS improved from HHSpre:51 (SD:14) to HHSfu:88 (SD:13).

A greater incidence of complications were seen in the Cases (n=10; ARMD-3, infection-4, loosening-2, dislocation-1) compared to the Controls (n=3; dislocation-2, loosening-1) (p=0.01). Consequently, more THRs required revision in the Cases (n=7) compared to the Controls (n=1) (p=0.01). There were no differences in OHSpre/OHSfu/ΔOHS/HHSpre/HHSfu/ΔHHS between cases and controls (p=0.1 – 0.9).

There were no difference in complications (7/29 Vs. 3/25; p=0.3), nor revision rates (5/29 Vs. 2/25; p=0.3) between THA-1st and THA-2nd Groups. Greater differences in PROMs were detected between the groups. The THA-1st Group, compared to the THA-2nd Group had higher OHSpre (19 Vs 12), HHSpre (54 Vs 48), OHSfu (43 Vs 32) and HHSfu (93 Vs 76), (p=0.001–0.005). However, no statistically significant difference in ΔOHS (24 Vs 17) and ΔHHS (39 Vs 26) were seen between the THA-1st and THA-2nd Groups (p=0.1).

Patients with a 1° THR and DSA, had a greater rate complications and revisions compared to a matched control. Overall, no difference in PROMs were seen between Cases and Controls. No significantly increased risk of dislocation was seen in this predominantly 1- and 2-level DSA cohort. The superior PROMs detected in the THA-1st Group provide evidence that the hip pathology should be addressed 1st (in cases with 1- or 2-level planned DSA).


The Bone & Joint Journal
Vol. 106-B, Issue 8 | Pages 792 - 801
1 Aug 2024
Kleeman-Forsthuber L Kurkis G Madurawe C Jones T Plaskos C Pierrepont JW Dennis DA

Aims. Spinopelvic pathology increases the risk for instability following total hip arthroplasty (THA), yet few studies have evaluated how pathology varies with age or sex. The aims of this study were: 1) to report differences in spinopelvic parameters with advancing age and between the sexes; and 2) to determine variation in the prevalence of THA instability risk factors with advancing age. Methods. A multicentre database with preoperative imaging for 15,830 THA patients was reviewed. Spinopelvic parameter measurements were made by experienced engineers, including anterior pelvic plane tilt (APPT), spinopelvic tilt (SPT), sacral slope (SS), lumbar lordosis (LL), and pelvic incidence (PI). Lumbar flexion (LF), sagittal spinal deformity, and hip user index (HUI) were calculated using parameter measurements. Results. With advancing age, patients demonstrate increased posterior APPT, decreased standing LL, decreased LF, higher pelvic incidence minus lumbar lordosis (PI-LL) mismatch, higher prevalence of abnormal spinopelvic mobility, and higher HUI percentage. With each decade, APPT progressed posteriorly 2.1°, LF declined 6.0°, PI-LL mismatch increased 2.9°, and spinopelvic mobility increased 3.8°. Significant differences were found between the sexes for APPT, SPT, SS, LL, and LF, but were not felt to be clinically relevant. Conclusion. With advancing age, spinopelvic biomechanics demonstrate decreased spinal mobility and increased pelvic/hip mobility. Surgeons should consider the higher prevalence of instability risk factors in elderly patients and anticipate changes evolving in spinopelvic biomechanics for young patients. Cite this article: Bone Joint J 2024;106-B(8):792–801


The Bone & Joint Journal
Vol. 105-B, Issue 5 | Pages 496 - 503
1 May 2023
Mills ES Talehakimi A Urness M Wang JC Piple AS Chung BC Tezuka T Heckmann ND

Aims. It has been well documented in the arthroplasty literature that lumbar degenerative disc disease (DDD) contributes to abnormal spinopelvic motion. However, the relationship between the severity or pattern of hip osteoarthritis (OA) as measured on an anteroposterior (AP) pelvic view and spinopelvic biomechanics has not been well investigated. Therefore, the aim of the study is to examine the association between the severity and pattern of hip OA and spinopelvic motion. Methods. A retrospective chart review was conducted to identify patients undergoing primary total hip arthroplasty (THA). Plain AP pelvic radiographs were reviewed to document the morphological characteristic of osteoarthritic hips. Lateral spine-pelvis-hip sitting and standing plain radiographs were used to measure sacral slope (SS) and pelvic femoral angle (PFA) in each position. Lumbar disc spaces were measured to determine the presence of DDD. The difference between sitting and standing SS and PFA were calculated to quantify spinopelvic motion (ΔSS) and hip motion (ΔPFA), respectively. Univariate analysis and Pearson correlation were used to identify morphological hip characteristics associated with changes in spinopelvic motion. Results. In total, 139 patients were included. Increased spinopelvic motion was observed in patients with loss of femoral head contour, cam deformity, and acetabular bone loss (all p < 0.05). Loss of hip motion was observed in patients with loss of femoral head contour, cam deformity, and acetabular bone loss (all p < 0.001). A decreased joint space was associated with a decreased ΔPFA (p = 0.040). The presence of disc space narrowing, disc space narrowing > two levels, and disc narrowing involving the L5–S1 segment were associated with decreased spinopelvic motion (all p < 0.05). Conclusion. Preoperative hip OA as assessed on an AP pelvic radiograph predicts spinopelvic motion. These data suggest that specific hip osteoarthritic morphological characteristics listed above alter spinopelvic motion to a greater extent than others. Cite this article: Bone Joint J 2023;105-B(5):496–503


The Bone & Joint Journal
Vol. 104-B, Issue 3 | Pages 352 - 358
1 Mar 2022
Kleeman-Forsthuber L Vigdorchik JM Pierrepont JW Dennis DA

Aims. Pelvic incidence (PI) is a position-independent spinopelvic parameter traditionally used by spinal surgeons to determine spinal alignment. Its relevance to the arthroplasty surgeon in assessing patient risk for total hip arthroplasty (THA) instability preoperatively is unclear. This study was undertaken to investigate the significance of PI relative to other spinopelvic parameter risk factors for instability to help guide its clinical application. Methods. Retrospective analysis was performed of a multicentre THA database of 9,414 patients with preoperative imaging (dynamic spinopelvic radiographs and pelvic CT scans). Several spinopelvic parameter measurements were made by engineers using advanced software including sacral slope (SS), standing anterior pelvic plane tilt (APPT), spinopelvic tilt (SPT), lumbar lordosis (LL), and PI. Lumbar flexion (LF) was determined by change in LL between standing and flexed-seated lateral radiographs. Abnormal pelvic mobility was defined as ∆SPT ≥ 20° between standing and flexed-forward positions. Sagittal spinal deformity (SSD) was defined as PI-LL mismatch > 10°. Results. PI showed a positive correlation with parameters of SS, SPT, and LL (r-value range 0.468 to 0.661). Patients with a higher PI value showed higher degrees of standing LL, likely as a compensatory measure to maintain sagittal spine balance. There was a positive correlation between LL and LF such that patients with less standing LL had decreased LF (r = 0.49). Similarly, there was a positive correlation between increased SSD and decreased LF (r = 0.54). PI in isolation did not show any significant correlation with lumbar (r = 0.04) or pelvic mobility (r = 0.02). The majority of patients (range 89.4% to 94.2%) had normal lumbar and pelvic mobility regardless of the PI value. Conclusion. The PI value alone is not indicative of either spinal or pelvic mobility, and thus in isolation may not be a risk factor for THA instability. Patients with SSD had higher rates of spinopelvic stiffness, which may be the mechanism by which PI relates to THA instability risk, but further clinical studies are required. Cite this article: Bone Joint J 2022;104-B(3):352–358


The Bone & Joint Journal
Vol. 106-B, Issue 1 | Pages 19 - 27
1 Jan 2024
Tang H Guo S Ma Z Wang S Zhou Y

Aims. The aim of this study was to evaluate the reliability and validity of a patient-specific algorithm which we developed for predicting changes in sagittal pelvic tilt after total hip arthroplasty (THA). Methods. This retrospective study included 143 patients who underwent 171 THAs between April 2019 and October 2020 and had full-body lateral radiographs preoperatively and at one year postoperatively. We measured the pelvic incidence (PI), the sagittal vertical axis (SVA), pelvic tilt, sacral slope (SS), lumbar lordosis (LL), and thoracic kyphosis to classify patients into types A, B1, B2, B3, and C. The change of pelvic tilt was predicted according to the normal range of SVA (0 mm to 50 mm) for types A, B1, B2, and B3, and based on the absolute value of one-third of the PI-LL mismatch for type C patients. The reliability of the classification of the patients and the prediction of the change of pelvic tilt were assessed using kappa values and intraclass correlation coefficients (ICCs), respectively. Validity was assessed using the overall mean error and mean absolute error (MAE) for the prediction of the change of pelvic tilt. Results. The kappa values were 0.927 (95% confidence interval (CI) 0.861 to 0.992) and 0.945 (95% CI 0.903 to 0.988) for the inter- and intraobserver reliabilities, respectively, and the ICCs ranged from 0.919 to 0.997. The overall mean error and MAE for the prediction of the change of pelvic tilt were -0.3° (SD 3.6°) and 2.8° (SD 2.4°), respectively. The overall absolute change of pelvic tilt was 5.0° (SD 4.1°). Pre- and postoperative values and changes in pelvic tilt, SVA, SS, and LL varied significantly among the five types of patient. Conclusion. We found that the proposed algorithm was reliable and valid for predicting the standing pelvic tilt after THA. Cite this article: Bone Joint J 2024;106-B(1):19–27


The Bone & Joint Journal
Vol. 106-B, Issue 6 | Pages 548 - 554
1 Jun 2024
Ohyama Y Minoda Y Masuda S Sugama R Ohta Y Nakamura H

Aims. The aim of this study was to compare the pattern of initial fixation and changes in periprosthetic bone mineral density (BMD) between patients who underwent total hip arthroplasty (THA) using a traditional fully hydroxyapatite (HA)-coated stem (T-HA group) and those with a newly introduced fully HA-coated stem (N-HA group). Methods. The study included 36 patients with T-HA stems and 30 with N-HA stems. Dual-energy X-ray absorptiometry was used to measure the change in periprosthetic BMD, one and two years postoperatively. The 3D contact between the stem and femoral cortical bone was evaluated using a density-mapping system, and clinical assessment, including patient-reported outcome measurements, was recorded. Results. There were significantly larger contact areas in Gruen zones 3, 5, and 6 in the N-HA group than in the T-HA group. At two years postoperatively, there was a significant decrease in BMD around the proximal-medial femur (zone 6) in the N-HA group and a significant increase in the T-HA group. BMD changes in both groups correlated with BMI or preoperative lumbar BMD rather than with the extent of contact with the femoral cortical bone. Conclusion. The N-HA-coated stem showed a significantly larger contact area, indicating a distal fixation pattern, compared with the traditional fully HA-coated stem. The T-HA-coated stem showed better preservation of periprosthetic BMD, two years postoperatively. Surgeons should consider these patterns of fixation and differences in BMD when selecting fully HA-coated stems for THA, to improve the long-term outcomes. Cite this article: Bone Joint J 2024;106-B(6):548–554


The Bone & Joint Journal
Vol. 103-B, Issue 7 Supple B | Pages 59 - 65
1 Jul 2021
Bracey DN Hegde V Shimmin AJ Jennings JM Pierrepont JW Dennis DA

Aims. Cross-table lateral (CTL) radiographs are commonly used to measure acetabular component anteversion after total hip arthroplasty (THA). The CTL measurements may differ by > 10° from CT scan measurements but the reasons for this discrepancy are poorly understood. Anteversion measurements from CTL radiographs and CT scans are compared to identify spinopelvic parameters predictive of inaccuracy. Methods. THA patients (n = 47; 27 males, 20 females; mean age 62.9 years (SD 6.95)) with preoperative spinopelvic mobility, radiological analysis, and postoperative CT scans were retrospectively reviewed. Acetabular component anteversion was measured on postoperative CTL radiographs and CT scans using 3D reconstructions of the pelvis. Two cohorts were identified based on a CTL-CT error of ≥ 10° (n = 11) or < 10° (n = 36). Spinopelvic mobility parameters were compared using independent-samples t-tests. Correlation between error and mobility parameters were assessed with Pearson’s coefficient. Results. Patients with CTL error > 10° (10° to 14°) had stiffer lumbar spines with less mean lumbar flexion (38.9°(SD 11.6°) vs 47.4° (SD 13.1°); p = 0.030), different sagittal balance measured by pelvic incidence-lumbar lordosis mismatch (5.9° (SD 18.8°) vs -1.7° (SD 9.8°); p = 0.042), more pelvic extension when seated (pelvic tilt -9.7° (SD 14.1°) vs -2.2° (SD 13.2°); p = 0.050), and greater change in pelvic tilt between supine and seated positions (12.6° (SD 12.1°) vs 4.7° (SD 12.5°); p = 0.036). The CTL measurement error showed a positive correlation with increased CTL anteversion (r = 0.5; p = 0.001), standing lordosis (r = 0.23; p = 0.050), seated lordosis (r = 0.4; p = 0.009), and pelvic tilt change between supine and step-up positions (r = 0.34; p = 0.010). Conclusion. Differences in spinopelvic mobility may explain the variability of acetabular anteversion measurements made on CTL radiographs. Patients with stiff spines and increased compensatory pelvic movement have less accurate measurements on CTL radiographs. Flexion of the contralateral hip is required to obtain clear CTL radiographs. In patients with lumbar stiffness, this movement may extend the pelvis and increase anteversion of the acetabulum on CTL views. Reliable analysis of acetabular component anteversion in this patient population may require advanced imaging with a CT scan. Cite this article: Bone Joint J 2021;103-B(7 Supple B):59–65