The anatomy of the femur shows a high inter-patient variability, making it challenging to design standard prosthetic devices that perfectly adapt to the geometry of each individual. Over the past decade, Statistical Shape Models (SSMs) have been largely used as a tool to represent an average shape of many three-dimensional objects, as well as their variation in shape. However, no studies of the morphology of the residual femoral canal in patients who have undergone an amputation have been performed. The aim of this study was therefore to evaluate the main modes of variation in the shape of the canal, therefore simulating and analysing different
Implant removal after clavicle plating is common. Low-profile dual mini-fragment plate constructs are considered safe for fixation of diaphyseal clavicle fractures. The aim of this study was to investigate: (1) the biomechanical competence of different dual plate designs from stiffness and cycles to failure, and (2) to compare them against 3.5mm single superoanterior plating. Twelve artificial clavicles were assigned to 2 groups and instrumented with titanium matrix mandible plates as follows: group 1 (G1) (2.5mm anterior+2.0mm superior) and group 2 (G2) (2.0mm anterior+2.0mm superior). An unstable clavicle shaft fracture (AO/OTA15.2C) was simulated. Specimens were cyclically tested to failure under craniocaudal cantilever bending, superimposed with torsion around the shaft axis and compared to previous published data of 6 locked superoanterior plates tested under the same conditions (G3). Displacement (mm) after 5000 cycles was highest in G3 (10.7±0.8) followed by G2 (8.5±1.0) and G1 (7.5±1.0), respectively. Both outcomes were significantly higher in G3 as compared to both G1 and G2 (p≤0.027). Cycles to failure were highest in G3 (19536±3586) followed by G1 (15834±3492) and G2 (11104±3177), being significantly higher in G3 compared to G2 (p=0.004). Failure was breakage of one or two plates at the
The purpose of this study was to compare the results and complications of tibial lengthening over an intramedullary nail with treatment using the traditional Ilizarov method. In this matched case study, 16 adult patients underwent 19 tibial lengthening over nails (LON) procedures. For the matched case group, 17 patients who underwent 19 Ilizarov tibial lengthenings were retrospectively matched to the LON group.Objectives
Methods
Hydroxyapatite-coated standard anatomical and customised femoral stems are designed to transmit load to the metaphyseal part of the proximal femur in order to avoid stress shielding and to reduce resorption of bone. In a randomised in vitro study, we compared the changes in the pattern of cortical strain after the insertion of hydroxyapatite-coated standard anatomical and customised stems in 12 pairs of human cadaver femora. A hip simulator reproduced the physiological loads on the proximal femur in single-leg stance and stair-climbing. The cortical strains were measured before and after the insertion of the stems. Significantly higher strain shielding was seen in Gruen zones 7, 6, 5, 3 and 2 after the insertion of the anatomical stem compared with the customised stem. For the anatomical stem, the hoop strains on the femur also indicated that the load was transferred to the cortical bone at the lower metaphyseal or upper diaphyseal part of the proximal femur. The customised stem induced a strain pattern more similar to that of the intact femur than the standard, anatomical stem.