The
We studied whether the presence of lateral osteophytes
on plain radiographs was a predictor for the quality of cartilage
in the
Distal femoral varus osteotomy is a procedure intended to relieve pain, correct valgus deformity, and delay or possibly prevent the progression of
INTRODUCTION. Controversy exists regarding the ability of unicompartmental knee arthroplasty (UKA) to restore native knee kinematics, with some studies suggesting native kinematics are restored in most or all patients after UKA. 1–3. , while others indicate UKA fails to restore native knee kinematics. 4,5. Previous analysis of UKA articular contact kinematics focused on the replaced compartment. 2,5. , neglecting to assess the effects of the arthroplasty on the contralateral compartment which may provide insight to future pathology such as accelerated degeneration due to overload. 6. or a change in the location of cartilage contact. 7. The purpose of this study was to assess the ability of medial UKA to restore native knee kinematics, contact patterns, and
Distal femoral varus osteotomy is a procedure intended to relieve pain, correct valgus deformity, and delay or possibly prevent the progression of
Introduction:. The number of medial unicompartmental knee arthroplasties (UKA) performed over the last decade has increased by 30%, as studies have demonstrated improved knee kinematics, range of motion, and decreased perioperative morbidity versus total knee arthroplasty. However, concerns remain regarding the future risk of revision due to
Objectives. Patient-specific (PS) implantation surgical technology has been introduced in recent years and a gradual increase in the associated number of surgical cases has been observed. PS technology uses a patient’s own geometry in designing a medical device to provide minimal bone resection with improvement in the prosthetic bone coverage. However, whether PS unicompartmental knee arthroplasty (UKA) provides a better biomechanical effect than standard off-the-shelf prostheses for UKA has not yet been determined, and still remains controversial in both biomechanical and clinical fields. Therefore, the aim of this study was to compare the biomechanical effect between PS and standard off-the-shelf prostheses for UKA. Methods. The contact stresses on the polyethylene (PE) insert, articular cartilage and lateral meniscus were evaluated in PS and standard off-the-shelf prostheses for UKA using a validated finite element model. Gait cycle loading was applied to evaluate the biomechanical effect in the PS and standard UKAs. Results. The contact stresses on the PE insert were similar for both the PS and standard UKAs. Compared with the standard UKA, the PS UKA did not show any biomechanical effect on the medial PE insert. However, the contact stresses on the articular cartilage and the meniscus in the
Goodfellow &
Bullough (1968) first described the pattern of articular cartilage wear in the elbow. More recent post mortem studies have shown that advanced degenerative changes can develop in the radio-capitellar (lateral) compartment of elbow joints of elderly subjects in which the humeroulnar (medial) compartment remains remarkably well preserved. We have reviewed the findings in a consecutive series of 117 elbow arthroscopies performed on patients with elbow pain resistant to conservative treatments (age range 21–80 years: mean age 51 years). We documented established degenerative changes involving articular cartilage in 68 patients (59%). In this group we found that in 60 patients (88%) the degenerative changes were confined to the
Aims. The aims of this study were to determine the proportion of patients
with outlier varus or valgus alignment in kinematically aligned
total knee arthroplasty (TKA), whether those with outlier varus
or valgus alignment have higher forces in the medial or lateral
compartments of the knee than those with in-range alignment and
whether measurements of the alignment of the limb, knee and components
predict compartment forces. Patients and Methods. The intra-operative forces in the medial and lateral compartments
were measured with an instrumented tibial insert in 67 patients
who underwent a kinematically aligned TKA during passive movement.
The mean of the forces at full extension, 45° and 90° of flexion
determined the force in the medial and
The aim of this study was to assess the distribution of wear down to bone in
A description is given of a direct approach to the
Purpose: The purpose of this study was to determine what differences exist in the knee flexion, rotation and adduction moments and periarticular knee muscle activation patterns between subjects with medial compartment knee osteoarthritis (OA) and those with
Soft tissue balancing in fixed genu valgum can be challenging and may lead to instability in flexion. Current techniques involve release of the tight secondary structures initially, with the fascia lata and the lateral capsule usually addressed first, and then the posterior capsule if necessary. If ligament testing does not permit neutral alignment in extension, release of the lateral collateral ligament becomes necessary. The most common way of achieving neutral alignment is by lengthening the lateral structures through elevation of the proximal insertion of the lateral collateral ligament (LCL). This technique has two drawbacks: the lengthening affects both extension and flexion gaps and may give rise to excessive external rotation of the femoral implant, with too much offset of the rotational centre. Particularly when non-constrained prostheses are used, the resulting lateral instability in flexion can be a problem. An alternative is to perform a release at the level of the distal insertion of the LCL, as advocated by Keblish and Buechel. However, this still induces undue external rotation of the femoral implant. We think that if the situation in flexion before any release is satisfactory in terms of the patella, it should not be changed. This means that in order to maintain optimal patellofemoral function, the flexion gap should be addressed before any release. The task is then to achieve a good extension gap with a well-aligned knee. In fixed valgus deformities, this means distal translocation of the femoral insertion of the LCL by distal sliding lateral condylar osteotomy. This procedure aims to preserve the flexion condition and to allow distal slide of the lateral condylar osteotomised fragment. In doing the osteotomy, it is important to make the lateral fragment sufficiently large to allow relocation of the osteotomised fragment inside the prosthesis. This provides the immediate stability necessary for good healing. We have been using two simple cortical screws to ensure stability of the fragment. This paper reports our experience in 100 cases.
The Oxford mobile-bearing unicompartmental knee
replacement (UKR) is an effective and safe treatment for osteoarthritis
of the medial compartment. The results in the lateral compartment
have been disappointing due to a high early rate of dislocation
of the bearing. A series using a newly designed domed tibial component
is reported. The first 50 consecutive domed lateral Oxford UKRs in 50 patients
with a mean follow-up of three years (2.0 to 4.3) were included.
Clinical scores were obtained prospectively and Kaplan-Meier survival
analysis was performed for different endpoints. Radiological variables
related to the position and alignment of the components were measured. One patient died and none was lost to follow-up. The cumulative
incidence of dislocation was 6.2% (95% confidence interval (CI)
2.0 to 17.9) at three years. Survival using revision for any reason
and aseptic revision was 94% (95% CI 82 to 98) and 96% (95% CI 85
to 99) at three years, respectively. Outcome scores, visual analogue
scale for pain and maximum knee flexion showed a significant improvement
(p <
0.001). The mean Oxford knee score was 43 (. sd. 5.3),
the mean Objective American Knee Society score was 91 (. sd. 13.9)
and the mean Functional American Knee Society score was 90 (. sd. 17.5).
The mean maximum flexion was 127° (90° to 145°). Significant elevation
of the lateral joint line as measured by the proximal tibial varus
angle (p = 0.04) was evident in the dislocation group when compared
with the non-dislocation group. Clinical results are excellent and short-term survival has improved
when compared with earlier series. The risk of dislocation remains
higher using a mobile-bearing UKR in the
Abstract. Introduction. Patient selection is key to the success of medial unicondylar knee arthroplasty (UKA). Progression of arthritis is the most common indication for revision. Various methods of assessing the
Aims. Although knee osteoarthritis (OA) is diagnosed and monitored radiologically, actual full-thickness cartilage loss (FTCL) has rarely been correlated with radiological classification. This study aims to analyze which classification system correlates best with FTCL and to assess their reliability. Methods. A prospective study of 300 consecutive patients undergoing unilateral total knee arthroplasty (TKA) for OA (mean age 69 years (44 to 91; standard deviation (SD) 9.5), 178 (59%) female). Two blinded examiners independently graded preoperative radiographs using five common systems: Kellgren-Lawrence (KL); International Knee Documentation Committee (IKDC); Fairbank; Brandt; and Ahlbäck. Interobserver agreement was assessed using the intraclass correlation coefficient (ICC). Intraoperatively, anterior cruciate ligament (ACL) status and the presence of FTCL in 16 regions of interest were recorded. Radiological classification and FTCL were correlated using the Spearman correlation coefficient. Results. Knees had a mean of 6.8 regions of FTCL (SD 3.1), most common medially. The commonest patterns of FTCL were medial ± patellofemoral (143/300, 48%) and tricompartmental (89/300, 30%). ACL status was associated with pattern of FTCL (p = 0.023). All radiological classification systems demonstrated moderate ICC, but this was highest for the IKDC: whole knee 0.68 (95% confidence interval (CI) 0.60 to 0.74); medial compartment 0.84 (95% CI 0.80 to 0.87); and
Biplane video X-ray (BVX) – with models segmented from magnetic resonance imaging (MRI) – is used to directly track bones during dynamic activities. Investigating tibiofemoral kinematics helps to understand effects of disease, injury, and possible interventions. Develop a protocol and compare in-vivo kinematics during loaded dynamic activities using BVX and MRI. BVX (60 FPS) was captured whilst three healthy volunteers performed three repeats of lunge, stair ascent and gait. MRI scans were performed (Magnetom 3T Prisma, Siemens). 3D bone models of the tibia and femur were segmented (Simpleware Scan IP, Synopsis). Bone poses were obtained by manually matching bone models to X-rays (DSX Suite, C-Motion Inc.). Mean range of motion (ROM) of the contact points on the medial and lateral tibial plateau were calculated using custom MATLAB code (MathWorks). Results were filtered using an adaptive low pass Butterworth filter (Frequency range: 5-29Hz). Gait and Stair ascent activities from one participant's data showed increased ROM for medial-lateral (ML) translation in the medial compartment but decreased ROM in anterior-posterior (AP) translation when comparing against the same translations on the
Aims. Micromotion of the polyethylene (PE) inlay may contribute to backside PE wear in addition to articulate wear of total knee arthroplasty (TKA). Using radiostereometric analysis (RSA) with tantalum beads in the PE inlay, we evaluated PE micromotion and its relationship to PE wear. Methods. A total of 23 patients with a mean age of 83 years (77 to 91), were available from a RSA study on cemented TKA with Maxim tibial components (Zimmer Biomet). PE inlay migration, PE wear, tibial component migration, and the anatomical knee axis were evaluated on weightbearing stereoradiographs. PE inlay wear was measured as the deepest penetration of the femoral component into the PE inlay. Results. At mean six years’ follow-up, the PE wear rate was 0.08 mm/year (95% confidence interval 0.06 to 0.09 mm/year). PE inlay external rotation was below the precision limit and did not influence PE wear. Varus knee alignment did not influence PE wear (p = 0.874), but increased tibial component total translation (p = 0.041). Conclusion. The PE inlay was well fixed and there was no relationship between PE stability and PE wear. The PE wear rate was low and similar in the medial and
Contemporary indications for unicompartmental knee replacement (UKR) include bone on bone radiographic changes in the medial compartment with relatively preserved lateral and patellofemoral compartments. The role of MRI in identifying candidates for UKR is commonplace. The aim of this study was to assess the relationship between radiographic and MRI pre-operative grade and outcome following UKR. A retrospective analysis of medial UKR patients from 2017 to 2021. Inclusion criteria were medial UKR for osteoarthritis with pre-operative and post-operative Oxford Knee Scores (OKS), pre-operative radiographs and MRI. 89 patients were included. Whilst all patients had grade 4 ICRS scores on MRI, 36/89 patients had grade 3 KL radiographic scores in the medial compartment, 50/89 had grade 4 KL scores on the medial compartment. Grade 3 KL with grade 4 IRCS medial compartment patients had a mean OKS change of 17.22 (Sd 9.190) meanwhile Grade 4 KL had a mean change of 17.54 (SD 9.001), with no statistical difference in the OKS change score following UKR between these two groups (p=0.873). Medial bone oedema was present in all but one patient. Whilst
Numerous papers present in-vivo knee kinematics data following total knee arthroplasty (TKA) from fluoroscopic testing. Comparing data is challenging given the large number of factors that potentially affect the reported kinematics. This paper aims at understanding the effect of following three different factors: implant geometry, performed activity and analysis method. A total of 30 patients who underwent TKA were included in this study. This group was subdivided in three equal groups: each group receiving a different type of posterior stabilized total knee prosthesis. During single-plane fluoroscopic analysis, each patient performed three activities: open chain flexion extension, closed chain squatting and chair-rising. The 2D fluoroscopic data were subsequently converted to 3D implant positions and used to evaluate the tibiofemoral contact points and landmark-based kinematic parameters. Significantly different anteroposterior translations and internal-external rotations were observed between the considered implants. In the