Advertisement for orthosearch.org.uk
Results 1 - 8 of 8
Results per page:
Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_16 | Pages 130 - 130
1 Dec 2015
Ravn C Overgaard A Knudsen N Nielsen J Olsen M Toftum J Kemp M Frich L Overgaard S
Full Access

To compare the number of airborne bacteria and particles under laminar airflow (LAF) versus turbulent airflow (TAF) with 100% and 50% reduced fresh air exchange during simulated total hip arthroplasty (THA). Two equally dimensioned operating rooms (OR) build in 2009 with modern ventilation systems of LAF and TAF respectively were used during 32 simulated THA-operations under four different ventilation conditions: LAF or TAF with either full (n=8+8) or 50% reduced (n=8+8) fresh air exchange volume. We followed a protocol controlling the complete perioperative setup including interior cleaning, sterile materials, OR-personnel procedures, surgical clothing, instruments and 50-minute surgical procedure on a full-sized dummy at 37°C. Microbial contamination was determined intra-operatively by ISO-validated Microbiological Active Sampler (MAS-100, Merck, 100 L/min) at two 10-minute intervals in 30 cm distance of the operating field. Blood-agar plates from each operation were incubated for 2 days at 35°C and the microbial concentration was determined by viable counting of colony-forming units (CFU) per m3 air. Furthermore airborne particulate (0,5–10 µm) was sampled with ISO-validated light scattering particle analyzer (MET-one, Beckman Coulter, 28,3 L/min) during the 50-minute surgical procedure (1,42 m3/operation). Large particle sizes (>5 µm) are correlated with microbial contamination (Stocks, 2010). According to standards large-sized particle number must not exceed a 2.900/m3-threshold for cleanroom operations. Microbial air concentration (mean CFU/m3 ±standard deviation) under LAF conditions with full and 50% reduced fresh air exchange were 0,4±0,8 and 0,4±0,4 respectively, whereas air contamination under TAF conditions were significantly higher with 7,6±2,0 and 10,3±8,1 (p<0,05). Large (>5 µm) airborne particulate (mean no./m3 ±standard deviation) under LAF conditions with full and 50% reduced fresh air exchange were 1.581±2.841 and 1.018±1.084 respectively, whereas particulate under TAF conditions were 7.923±5.151 and 6.157±2.439 respectively. Microbial air contamination was significantly lower under LAF ventilation compared to TAF during simulated THA under both full and 50% reduced fresh air exchange in modern operating theatres used in daily clinic. The number of particles measured under TAF conditions exceeded the threshold for cleanroom operations in 12/16 simulated operations. These findings indicate that LAF reduces the airborne microbial risk factor of surgical site infection in comparison to TAF


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_15 | Pages 62 - 62
1 Dec 2021
Wang Q Goswami K Xu C Tan T Clarkson S Parvizi J
Full Access

Aim. Whether laminar airflow (LAF) in the operating room (OR) is effective for decreasing periprosthetic joint infection (PJI) following total joint arthroplasty (TJA) remains a clinically significant yet controversial issue. This study investigated the association between operating room ventilation systems and the risk of PJI in TJA patients. Method. We performed a retrospective observational study on consecutive patients undergoing primary total knee arthroplasty (TKA) and total hip arthroplasty (THA) from January 2013-September 2017 in two surgical facilities within a single institution, with a minimum 1-year follow-up. All procedures were performed by five board-certified arthroplasty surgeons. The operating rooms at the facilities were equipped with LAF and turbulent ventilation systems, respectively. Patient characteristics were extracted from clinical records. PJI was defined according to Musculoskeletal Infection Society criteria within 1-year of the index arthroplasty. A multivariate logistic regression model was performed to explore the association between LAF and risk of 1-year PJI, and then a sensitivity analysis using propensity score matching (PSM) was performed to further validate the findings. Results. A total of 6,972 patients (2,797 TKA, 4,175 THA) were included. The incidence of PJI within 1 year for patients from the facility without laminar flow was similar at 0·4% to that of patients from the facility with laminar flow at 0·5%. In the multivariate logistic regression analysis, after all confounding factors were taken into account, the use of LAF was not significantly associated with reduction of the risk of PJI. After propensity score matching, there was no significant difference in the incidence of PJI within 1 year for patients between the two sites. Conclusions. The use of LAF in the operating room was not associated with a reduced incidence of PJI following primary TJA. With an appropriate perioperative protocol for infection prevention, LAF does not seem to play a protective role in PJI prevention


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_23 | Pages 87 - 87
1 Dec 2016
Langvatn H Schrama JC Engesæter LB Lingaas E Dale H
Full Access

Aim. The aim of this study was to validate the information on operating room ventilation reported to the Norwegian Arthroplasty Register (NAR) and to assess the influence of this ventilation on the risk of revision due to infection after primary total hip arthroplasty (THA). Method. Current and previous ventilation systems were evaluated together with the hospitals head engineer in 40 orthopaedic hospitals. The ventilation system of each operating room was assessed and confirmed as either conventional ventilation, vertical laminar airflow (LAF) or horizontal LAF. We then identified cases of first revision due to deep infection after primary THA and the type of ventilation system reported to the NAR in the period 1987–2014. The association between revision due to infection and operating room ventilation was estimated by relative risks (RR) in a Cox regression model. Results. 103370 primary THAs and 971 (0.9%) first revisions due to deep infection were reported. 51% of the primary THAs were performed in a room with vertical LAF, 44% in a room with conventional ventilation and 5% in a room with horizontal LAF. There was a mean misreporting rate of approximately 12%. There was similar risk of revision due to infection after THA performed in operating rooms with vertical laminar air flow compared to conventional ventilation (RR=0.95, 95 % CI: 0.8–1.1) and an increased risk of revision due to infection after THA performed in horizontal LAF conditions compared to conventionally ventilated conditions (RR=1.3, 95 % CI: 1.0–1.7). Conclusions. Surgeons are not fully aware of what kind of ventilation there is in the operating room. This study may indicate that vertical LAF is not superior to conventional ventilation concerning reduction of THA infection, and therefore does not justify any increased installation costs. Also, horizontal LAF systems appear to be inferior to other ventilation systems


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_16 | Pages 93 - 93
1 Dec 2015
Langvatn H Dale H Engesæter L Schrama J
Full Access

The aim of this study was to validate the information on operating room ventilation reported to the Norwegian Arthroplasty Register (NAR). We then wanted to assess the influence of operating room ventilation on the rate of revision due to infection after primary THA performed in operating rooms with conventional ventilation, “greenhouse”–ventilation and Laminar Airflow ventilation (LAF). We identified cases of THA revisions due to deep infection and the type of ventilation system reported to the NAR from the primary THA. We included 5 orthopaedic units reporting 17947 primary THAs and 136 (0.8%) revisions due to infection during the 28 year inclusion period from 1987 to 2014. The hospitals were visited and the current and previous ventilation systems were evaluated together with the hospitals head engineer, and the factual ventilation on the specific operating rooms was thereby assessed. The association between revision due to infection and operating room ventilation was estimated by calculating relative risks (RR) in a Cox regression model. 73% of the primary THAs were performed in a room with LAF, in contrast to the reported 80 % of LAF. There was similar risk of revision due to infection after THA performed in operating rooms with laminar air flow compared to conventional ventilation (RR=0.7, 95 % CI: 0.2–2.3) and after THA performed in operating rooms with “greenhouse”-ventilation compared to conventional ventilation (RR=1.2, 0.1–11). Surgeons are not fully aware of what kind of ventilation there is in the operating room. This study may indicate that, concerning reduction in incidence of THA infection, LAF does not justify the substantial installation cost. The numbers in the present study are too small to conclude strongly. Therefore, the study will be expanded to include all hospitals reporting to the NAR


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_15 | Pages 67 - 67
1 Dec 2015
Milandt N Nymark T Kolmos H Emmeluth C Overgaard S
Full Access

We conducted a randomized controlled trial (RCT) to investigate if iodine impregnated incision drapes (IIID) increases bacterial recolonization rates compared to no drape use under conditions of simulated total knee arthroplasty (TKA) surgery. Background: To prevent surgical site infection (SSI), one of the important issues is managing the patient´s own skin flora. Many prophylactic initiatives have been suggested, including the use of IIID. IIID has been debated for many years and was deemed ineffective in preventing SSI in a recent systematic review [1], while some evidence suggests a potential increase in postoperative infection risk, as a result of IIID use [2]. IIID is sparsely investigated in orthopaedic surgery. An increase in the number of viable bacteria in the surgical field of an arthroplasty operation has a potential to increase the risk of SSI in an otherwise elective and clean procedure [3]. 20 patients scheduled for TKA were recruited. Each patient had one knee randomized for draping with IIID [4] while the contralateral knee was left bare, thus the patients acted as their own controls. Operating theater settings with laminar airflow and standard perioperative procedures were simulated. Sampling was performed with the cup-scrup technique [5] using appropriate neutralizers. Samples were collected from the skin of each knee prior to disinfection and on 2 occasions after skin-preparation, 75 minutes apart. Bacterial quantities were estimated by spread plating with 48-hour aerobic incubation. Outcome was measured as colony forming units per square centimeter of skin. We used Wilcoxon signed-rank test for comparative analysis within and between knees. Following skin-disinfection we found no significant difference in bacterial quantities between the intervention and the control knee (p = 0.388). Neither did we see any difference in bacterial quantities between the two groups after 75 minutes of simulated surgery (p = 0.367). When analyzed within the intervention and control group, bacterial quantities had not significantly increased at the end of surgery when compared to baseline, thus no recolonization was detected (p = 0.665 and 0.609, respectively). Iodine impregnated incision drapes did not increase bacterial recolonization rates in simulated TKA surgery. Thus, the results of this RCT study does not support the hypothesis that iodine impregnated incision drapes promotes bacterial recolonization and postoperative infection risk


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXI | Pages 30 - 30
1 May 2012
Y. M M. H K. G D. W A. M
Full Access

Introduction. Infection is disastrous in arthroplasty surgery and requires multidisciplinary treatment and debilitating revision surgery. Between 80-90% of bacterial wound contaminants originate from colony forming units (CFUs) present in operating room air, originating from bacteria shed by personnel present in the operating environment. Steps to reduce bacterial shedding should reduce wound contamination. These steps include the use of unidirectional laminar airflow systems and the introduction of theatre attire modelled on this principle (e.g. total body exhaust suits). Our unit introduced the use of the Stryker Sterishield Personal Protection System helmet used with laminar flow theatre systems. This study compares an enclosed helmet system used with standard gowns, with standard hood and mask attire. Method. 12 simulated hip arthroplasties were performed, six using disposable sterile impermeable gown, hood and mask and a further 6 using a Sterishield helmet and hood. Each 20 minute operation consisted of arm and head movements simulating movements during surgery. Air was sampled at wound level on a sterile draped operating table using a Casella slit sampler, sampling at 700l/minute. Samples were incubated on Blood agar for 48 hours at 37°c and the CFUs grown were counted. Results. Mean number of CFUs for the helmet was 9.33 with hood and mask attire having 49.16 CFUs (S. Ds 6.34 and 26.17; p value 0.0126). In all cases a coagulase negative staphylococcus was isolated. Conclusion. Although the sample size was small, we demonstrated a fivefold increase in the number of CFUs shed when using hood and mask attire compared to personal helmet and sterile hood. We conclude that the helmet system is superior to non-sterile hood and mask at reducing bacterial shedding by theatre personnel


The Bone & Joint Journal
Vol. 97-B, Issue 9 | Pages 1162 - 1169
1 Sep 2015
George DA Gant V Haddad FS

The number of arthroplasties being undertaken is expected to grow year on year, and periprosthetic joint infections will be an increasing socioeconomic burden. The challenge to prevent and eradicate these infections has resulted in the emergence of several new strategies, which are discussed in this review.

Cite this article: Bone Joint J 2015;97-B:1162–9.


The Bone & Joint Journal
Vol. 98-B, Issue 1_Supple_A | Pages 27 - 30
1 Jan 2016
Whitehouse MR Parry MC Konan S Duncan CP

Periprosthetic joint infection (PJI) complicates between 0.5% and 1.2% primary total hip arthroplasties (THAs) and may have devastating consequences. The traditional assessment of patients suffering from PJI has involved the serological study of inflammatory markers and microbiological analysis of samples obtained from the joint space. Treatment has involved debridement and revision arthroplasty performed in either one or two stages.

We present an update on the burden of PJI, strategies for its diagnosis and treatment, the challenge of resistant organisms and the need for definitive evidence to guide the treatment of PJI after THA.

Cite this article: Bone Joint J 2016;98-B(1 Suppl A):27–30.