Advertisement for orthosearch.org.uk
Results 1 - 10 of 10
Results per page:
Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 72 - 72
1 Jul 2020
Kerslake S Tucker A Heard SM Buchko GM Hiemstra LA Lafave M
Full Access

The primary purpose of this study was to assess whether patients presenting with clinical graft laxity following primary anatomic anterior cruciate ligament (ACL) reconstruction using hamstring autograft reported a significant difference in disease-specific quality-of-life (QOL) as measured by the ACL-QOL questionnaire. Clinical ACL graft laxity was assessed in a cohort of 1134/1436 (79%) of eligible patients using the Lachman and Pivot-shift tests pre-operatively and at 12- and 24-months following ACL reconstruction. Post-operative ACL laxity was assessed by an orthopaedic surgeon and a physical therapist who were blinded to each other's examination. If there was a discrepancy between the clinical examination findings from these two assessors, then a third impartial examiner assessed the patient to ensure a grading consensus was reached. Patients completed the ACL-QOL questionnaire pre-operatively, and 12- and 24-months post-operatively. Descriptive statistics were used to assess patient demographics, rate of post-operative ACL graft laxity, surgical failures, and ACL-QOL scores. A Spearman rho correlation coefficient was utilised to assess the relationships between ACL-QOL scores and the Lachman and Pivot-shift tests at 24-months post-operative. An independent t-test was used to determine if there were differences in the ACL-QOL scores of subjects who sustained a graft failure compared to the intact graft group. ACL-QOL scores and post-operative laxity were assessed using a one-way analysis of variance (ANOVA). There were 70 graft failures (6.17%) in the 1134 patients assessed at 24-months. A total of 226 patients (19.9%) demonstrated 24-months post-operative ACL graft laxity. An isolated positive Lachman test was assessed in 146 patients (12.9%), an isolated positive Pivot-shift test was apparent in 14 patients (1.2%), and combined positive Lachman and Pivot-shift tests were assessed in 66 patients (5.8%) at 24-months post-operative. There was a statistically significant relationship between 24-month post-operative graft laxity and ACL-QOL scores (p < 0.001). Specifically, there was a significant correlation between the ACL-QOL and the Lachman test (rho = −0.20, p < 0.001) as well as the Pivot-shift test (rho = −0.22, p < 0.001). There was no significant difference between the scores collected from the graft failure group prior to failure occurring (mean = 74.38, SD = 18.61), and the intact graft group (mean = 73.97, SD = 21.51). At 24-months post-operative, the one-way ANOVA demonstrated a statistically significant difference between the ACL-QOL scores of the no laxity group (mean = 79.1, SD = 16.9) and the combined positive Lachman and Pivot-shift group (mean = 68.5, SD = 22.9), (p = 0, mean difference = 10.6). Two-years post ACL reconstruction, 19.9% of patients presented with clinical graft laxity. Post-operative graft laxity was significantly correlated with lower ACL-QOL scores. The difference in ACL-QOL scores for patients with an isolated positive Lachman or Pivot-shift test did not meet the threshold of a clinically meaningful difference. Patients with clinical laxity on both the Lachman and Pivot-shift tests demonstrated the lowest patient-reported ACL-QOL scores, and these results exceeded the minimal clinically important difference


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_3 | Pages 96 - 96
1 Feb 2017
DeClaire J Aiello P Freeman D
Full Access

Introduction. A common problem for patients receiving total knee arthroplasty (TKA) is postoperative functional impairment of the joint. This is minimized in bicruciate-retaining (ACL preserving) knee replacements, due to the important role of the anterior cruciate ligament (ACL) in normal kinematic patterns of the knee. We explore ACL sparing TKA by estimating the fraction of osteoarthritic TKA patients with a compatible ACL (assessed intraoperatively), while also examining potential preoperative indicators of ACL status. Method. We retrospectively examined 498 patients with a primary diagnosis of osteoarthritis who underwent a TKA by one surgeon between September 2013 and March 2015. Exclusion criteria included a prior TKA, a unicompartmental knee replacement, or inflammatory arthritis. Extensive preoperative data (within four months of surgery) for each patient was collected (anatomical alignment, extension, flexion, range of motion (ROM), Lachman test, and BMI) in addition to de-identified demographic data. The intraoperative assessment of ACL status (normal/functionally intact, compromised/deficient, or absent) was then obtained from our local database and compared with the preoperative data. IRB exemption was obtained to retrospectively collect data. Results. Intraoperative assessment of ACL status found 73.5% normal ACL, 12.9% compromised ACL, and 13.6% absent ACL. A significant demographic predictor of ACL status was gender (female - more likely intact, male - more likely absent; χ2 = 12.43, P<0.002). Patients with an intact ACL were also shown to have significantly better preoperative extension (χ2=14.83, P<0.022), flexion (F. 2, 469. = 9.93, P < 0.001), and ROM (F. 2, 469. = 9.38, P < 0.001) than those with a compromised ACL. We had a very small number of positive Lachman test results, and therefore could not draw any valid conclusion for preoperative predictive ability of the test. There was no significant difference in age, ethnicity, BMI or preoperative alignment between ACL status groups. Conclusion. Our study found 73.5% of 498 osteoarthritic TKA patients have an intact ACL. The strongest preoperative indicators of ACL status were gender, flexion, and ROM. Taken together, our results highlight a significant percentage of patients who are potential candidates for a bicruciate-retaining TKA


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_5 | Pages 20 - 20
1 Feb 2016
Alho R Henderson F Rowe P Deakin A Clarke J Picard F
Full Access

The knee joint displays a wide spectrum of laxity, from inherently tight to excessively lax even within the normal, uninjured population. The assessment of AP knee laxity in the clinical setting is performed by manual passive tests such as the Lachman test. Non-invasive assessment based on image free navigation has been clinically validated and used to quantify mechanical alignment and coronal knee laxity in early flexion. When used on cadavers the system demonstrated good AP laxity results with flexion up to 40°. This study aimed to validate the repeatability of the assessment of antero-posterior (AP) knee joint laxity using a non-invasive image free navigation system in normal, healthy subjects. Twenty-five healthy volunteers were recruited and examined in a single centre. AP translation was measured using a non-invasive navigation system (PhysioPilot) consisting of an infrared camera, externally mounted optical trackers and computer software. Each of the volunteers had both legs examined by a single examiner twice (two registrations). The Lachman test was performed through flexion in increments of 15°. Coefficients of Repeatability (CR) and Interclass Correlation Coefficients (ICC) were used to validate AP translation. The acceptable limits of agreement for this project were set at 3mm for antero-posterior tibial translation. The most reliable and repeatable AP translation assessments were at 30° and 45°, demonstrating good reliability (ICC 0.82, 0.82) and good repeatability (CR 2.5, 2.9). The AP translation assessment at 0°, 15°, 75° and 90° demonstrated moderate reliability (ICC ≤ 0.75), and poor repeatability (CR ≥3.0mm). The non-invasive system was able to reliably and consistently measure AP knee translation between 30° and 45° flexion, the clinically relevant range for this assessment. This system could therefore be used to quantify abnormal knee laxity and improve the assessment of knee instability and ligamentous injuries in a clinic setting


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_7 | Pages 14 - 14
1 Jul 2020
Marquis M Kerslake S Hiemstra LA Heard SM Buchko G
Full Access

The aim of an anterior cruciate ligament (ACL) reconstruction is to regain functional stability of the knee following ACL injury, ideally allowing patients to return to their pre-injury level of activity. The purpose of this study was to assess clinical, functional and patient-reported outcomes following primary ACL reconstruction with hamstring autograft. A prospective case-series design (n=1610) was used to gather data on post-operative ACL graft laxity, functional testing performance and scores on the ACL quality of life (ACL-QOL) questionnaire. Demographic data were collected for all patients. Post-operative ACL laxity assessment using the Lachman and Pivot-shift tests was completed independently on each patient by a physiotherapist and an orthopaedic surgeon at the 6-, 12- and 24-months post-operative appointments. A battery of functional tests was also assessed including single leg Bosu balance, and 4 single-leg hop tests. The hop tests provided a comparative assessment of limb-to-limb function. Patients completed the ACL-QOL at all time points. The degree and frequency of post-operative laxity was calculated. A Spearman's rank correlation matrix was undertaken to assess for relationships between post-operative laxity, functional test performance, and the ACL-QOL scores. A linear regression model was used to assess for relationships between the ACL-QOL scores, as well as the functional testing results, and patient demographic factors. ACLR patients were 55% male, with a mean age of 29.7 years (SD=10.4), mean BMI of 25 (SD=3.9), and mean Beighton score of 3.3 (SD=2.5). At clinical assessment 2-years post-operatively, 20.6% of patients demonstrated a positive Lachman test and 7.7% of patients demonstrated a positive Pivot-shift test. The mean ACL-QOL score was 28.6/100 (SD=13.4) pre-operatively, 58.2/100 (SD=17.6) at 6-months, 71.8/100 (SD=18.1) at 12-months, and 77.4/100 (SD=19.2) at 24-months post-operative. Functional tests assessing operative to non-operative limb performance demonstrated that patients were continuing to improve up to the 24-month mark, with limb symmetry indices ranging from 96.6–103.1 for the single-leg hop tests. Spearman's correlation coefficient demonstrated a significant relationship between the presence of ACL graft laxity and ACL-QOL score at 12- and 24-months post-operative (p < 0 .05). Functional performance on the single leg balance and single-leg hop tests demonstrated significant correlations to the 6-, 12- and 24-month ACL-QOL scores (p < 0 .05). There was no statistically significant correlation between the functional testing results and the presence of ACL graft laxity. This study demonstrated that up to 20.6% of patients had clinically measurable graft laxity 2-years after ACLR. In this cohort, patients with graft laxity demonstrated lower ACL-QOL scores, but did not demonstrate lower functional testing performance. Patient-reported ACL-QOL scores improved significantly at each time point following ACLR, and functional performance continued to improve up to 2-years after surgery. The ACL-QOL score was strongly correlated to the patient's ability to perform single-limb functional tests, indicating that the ACL-QOL score accurately predicted level of function


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLIV | Pages 99 - 99
1 Oct 2012
Hiranaka T Kawakami Y Hida Y Uemoto H Doita M Tsuji M
Full Access

Thirty-three knees in thirty-three patients who underwent ACLR using four-strand semitendinousus and gracilis tendon in our hospital were included in this study. In 17 knees, we use a fluoroscopic-based navigation system (Vector Vision ACL, BrainLab. Inc.) for positioning of the tunnels (Group 1). In the remaining 16 knees, positioning of the femoral and tibial tunnels was done without navigation (Group 2). In navigation operation, anteroposterior and lateral images of the knee were taken with a fluoroscope and captured into the computer. The optimal target points for bone tunnels were semi-automatically calculated and displayed on the screen. Femoral placement was determined based on the quadrant method. The target for tibial tunnel was set at 43% of tibial plateau AP length. Intraoperatively, positions of the drill guides were decided referring to both navigation image and arthroscopic image. We evaluated Lysholm score, International Knee Documentation Committee (IKDC) subjective score, Lachman test and pivot shift test at 1 year after operation and calculated bone tunnel position on the postoperative lateral x-ray films and expressed them as relative values against total AP length of the Blumensaat's line and of the tibia plateau. Lysholm score, IKDC subjective score, Lachman test and pivot shift test were not significantly differed between the groups. The femoral tunnels were 74.2±3.3% in Group 1 and 71.7±6.0% in Group 2 along and the tibial tunnels were 42.1±1.4% in group 1 and 43.0±4.6% in group 2 along the tibia plateau. Although femur and tibial tunnel positions were not significantly differed between the groups, variation of bone tunnel position was significantly smaller in Group 1, indicating a good reproducibility. One pin tract infection occurred in Group 1. This case successfully treated with debridment and antibiotics containing cement filling. Fluoroscopic navigation system is quite helpful for precise and reproducible creation of both femur and tibial tunnel. The results encourage us to use this system for double-bundle anatomical ACLR. However, a special care must be taken to avoid complication caused by tracker pin placement


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_20 | Pages 26 - 26
1 Dec 2017
Pedersen D Vanheule V Wirix-Speetjens R Taylan O Delport HP Scheys L Andersen MS
Full Access

Joint laxity assessments have been a valuable resource in order to understand the biomechanics and pathologies of the knee. Clinical laxity tests like the Lachman test, Pivot-shift test and Drawer test are, however, subjective of nature and will often only provide basic information of the joint. Stress radiography is another option for assessing knee laxity; however, this method is also limited in terms of quantifiability and one-dimensionality. This study proposes a novel non-invasive low-dose radiation method to accurately measure knee joint laxity in 3D. A method that combines a force controlled parallel manipulator device, a medical image and a biplanar x-ray system. As proof-of-concept, a cadaveric knee was CT scanned and subsequently mounted at 30 degrees of flexion in the device and placed inside a biplanar x-ray scanner. Biplanar x-rays were obtained for eleven static load cases. The preliminary results from this study display that the device is capable of measuring primary knee laxity kinematics similar to what have been reported in previous studies. Additionally, the results also display that the method is capable of capturing coupled motions like internal/external rotation when anteroposterior loads are applied. We have displayed that the presented method is capable of obtaining knee joint laxity in 3D. The method is combining concepts from robotic arthrometry and stress radiography into one unified solution that potentially enables unprecedented 3D joint laxity measurements non-invasively. The method potentially eliminates limitations present in previous methods and significantly reduces the radiation exposure of the patient compared to conventional stress radiography


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLII | Pages 2 - 2
1 Sep 2012
Piper D Halliday R Murray J Porteous A Robinson J
Full Access

Separation of the ACL into anteromedial (AM) and posterolateral (PL) fibre bundles has been widely accepted. The bundles act synergistically to restrain anterior laxity throughout knee flexion, with the PL bundle providing the more important restraint near extension and its obliquity better restraining tibial rotational laxity. 10% of ACL injuries involve isolated rupture to one of these bundles causing patients to present with instability symptoms or pain. As knowledge about the influence of the ACL bundles on knee kinematics has increased, isolated reconstruction of either PL or AM bundle has been advocated. However only one cohort study of 17 patients has been presented in the clinical literature. KOOS (Knee Injury and Osteoarthritis Outcome Score) and IKDC (International Knee Documentation Committee Form) scores at 1yr post op were obtained for 12 patients who had undergone isolated ACL augmentation between 2007 and 2009. These were compared with previously published outcome scores for standard ACL reconstruction procedures. In addition examination under anaesthesia (EUA) assessments were analysed to see if a pattern of laxity for isolated AM and PL rupture could be determined. There were 5 patients with isolated AM bundle rupture and 7 with isolated PL bundle rupture. EUA analysis demonstrated that patients with isolated PL bundle rupture had increased pivot shift and Lachman test laxity, whereas the AM bundle rupture group had increased laxity with the anterior drawer test. Compared to previously published IKDC scores, there were no difference between isolated bundle augmentation and standard ACL reconstruction. However the KOOS scores showed significantly increased Sports function scores which was significantly better in the isolated bundle augmentations (93/100 v's 74/100). Differences between isolated AM and PL bundle reconstructions were not distinguishable. Isolated ACL bundle tears make up a significant proportion ACL injuries. Although technically more difficult than standard ACL reconstruction, isolated bundle augmentation appears to result in improved sports function when compared to standard ACL reconstruction


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLIV | Pages 97 - 97
1 Oct 2012
Hammoud S Suero E Maak T Rozell J Inra M Jones K Cross M Pearle A
Full Access

Controversies about the management of injuries to the soft tissue structures of the posteromedial corner of the knee and the contribution of such peripheral structures on rotational stability of the knee are of increasing interest and currently remain inadequately characterised. The posterior oblique ligament (POL) is a fibrous extension off the distal aspect of the semimembranosus that blends with and reinforces the posteromedial aspect of the joint capsule. The POL is reported to be a primary restraint to internal rotation and a secondary restraint to valgus translation and external rotation. Although its role as a static stabiliser to the medial knee has been previously described, the effect of the posterior oblique ligament (POL) injuries on tibiofemoral stability during Lachman and pivot shift examination in the setting of ACL injury is unknown. The objective of this study was to quantify the magnitude of tibiofemoral translation during the Lachman and pivot shift tests after serial sectioning of the ACL and POL. Eight knees were used for this study. Ligamentous constraints were sequentially sectioned in the following order: ACL first, followed by the POL. Navigated mechanised pivot shift and Lachman examinations were performed before and after each structure was sectioned, and tibiofemoral translation was recorded. Lachman test: There was a mean 6.0 mm of lateral compartment translation in the intact knee (SD = 3.3 mm). After sectioning the ACL, translation increased to 13.8 mm (SD = 4.6; P<0.05). There was a nonsignificant 0.7 mm increase in translation after sectioning the POL (mean = 14.5 mm; SD = 3.9 P>0.05). Mechanised pivot shift: Mean lateral compartment translation in the intact knee was −1.2 mm (SD = 3.2 mm). Sectioning the ACL caused an increase in anterior tibial translation (mean = 6.7 mm; SD = 3.0 mm; P<0.05). No significant change in translation was seen after sectioning the POL (mean = 7.0 mm, SD = 4.0 mm; P>0.05). Sectioning the POL did not significantly alter tibiofemoral translation in the ACL deficient knee during the Lachman and pivot shift tests. This study brings into question whether injuries to the POL require reconstruction in conjunction with ACL reconstruction. More studies are needed to further characterise the role of the injured POL in knee stability and its clinical relevance in the ACL deficient and reconstructed knee


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLIV | Pages 101 - 101
1 Oct 2012
Hammoud S Suero E Maak T Rozell J Inra M Jones K Cross M Pearle A
Full Access

Controversies about the management of injuries to the soft tissue structures of the posteromedial corner of the knee and the contribution of such peripheral structures on rotational stability of the knee are of increasing interest and currently remain inadequately characterised. The posterior oblique ligament (POL) is a fibrous extension off the distal aspect of the semimembranosus that blends with and reinforces the posteromedial aspect of the joint capsule. The POL is reported to be a primary restraint to internal rotation and a secondary restraint to valgus translation and external rotation. Although its role as a static stabiliser to the medial knee has been previously described, the effect of the posterior oblique ligament (POL) injuries on tibiofemoral stability during Lachman and pivot shift examination in the setting of ACL injury is unknown. The objective of this study was to quantify the magnitude of tibiofemoral translation during the Lachman and pivot shift tests after serial sectioning of the ACL and POL. Eight knees were used for this study. Ligamentous constraints were sequentially sectioned in the following order: ACL first, followed by the POL. Navigated mechanised pivot shift and Lachman examinations were performed before and after each structure was sectioned, and tibiofemoral translation was recorded. Lachman test: There was a mean 6.0 mm of lateral compartment translation in the intact knee (SD = 3.3 mm). After sectioning the ACL, translation increased to 13.8 mm (SD = 4.6; P<0.05). There was a nonsignificant 0.7 mm increase in translation after sectioning the POL (mean = 14.5 mm; SD = 3.9 P>0.05). Mechanised pivot shift: Mean lateral compartment translation in the intact knee was −1.2 mm (SD = 3.2 mm). Sectioning the ACL caused an increase in anterior tibial translation (mean = 6.7 mm; SD = 3.0 mm; P<0.05). No significant change in translation was seen after sectioning the POL (mean = 7.0 mm, SD = 4.0 mm; P>0.05). Sectioning the POL did not significantly alter tibiofemoral translation in the ACL deficient knee during the Lachman and pivot shift tests. This study brings into question whether injuries to the POL require reconstruction in conjunction with ACL reconstruction. More studies are needed to further characterise the role of the injured POL in knee stability and its clinical relevance in the ACL deficient and reconstructed knee


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLIV | Pages 98 - 98
1 Oct 2012
Sherman S Suero E Delos D Rozell J Jones K Sherman M Pearle A
Full Access

Over the last two decades, anatomic anterior cruciate ligament (ACL) reconstructions have gained popularity, while the use of extraarticular reconstructions has decreased. However, the biomechanical rationale behind the lateral extraarticular sling has not been adequately studied. By understanding its effect on knee stability, it may be possible to identify specific situations in which lateral extraarticular tenodesis may be advantageous. The primary objective of this study was to quantify the ability of a lateral extraarticular sling to restore native kinematics to the ACL deficient knee, with and without combined intraarticular anatomic ACL reconstruction. Additionally, we aimed to characterise the isometry of four possible femoral tunnel positions for the lateral extraarticular sling. Eight fresh frozen hip-to-toe cadavers were used in this study. Navigated Lachman and mechanised pivot shift examinations were performed on ACL itact and deficient knees. Three reconstruction strategies were evaluated: Single bundle anatomic intraarticular ACL reconstruction, Lateral extraarticular sling, Combined intraarticular ACL reconstruction and lateral extraarticular sling. After all stability tests were completed, we quantified the isometry of four possible femoral tunnel positions for the lateral extraarticular sling using the Surgetics navigation system. A single tibial tunnel position was identified and digitised over Gerdy's tubercle. Four possible graft positions were identified on the lateral femoral condyle: the top of the lateral collateral ligament (LCL); the top of the septum; the ideal tunnel position, as defined by the navigation system's own algorithm; and the actual tunnel position used during testing, described in the literature as the intersection of the linear projections of the LCL and the septum over the lateral femoral condyle. For each of the four tunnel positions, the knee was cycled from 0 to 90® of flexion and fiber length was recorded at 30® intervals, therefore quantiying the magnitude of anisometry for each tunnel position. Stability testing: Sectioning of the ACL resulted in an increase in Lachman (15mm, p = 0.01) and mechanised pivot shift examination (6.75mm, p = 0.04) in all specimens compared with the intact knee. Anatomic intraarticular ACL reconstruction restored the Lachman (6.7mm, p = 3.76) and pivot shift (−3.5mm, p = 0.85) to the intact state. With lateral extraarticular sling alone, there was a trend towards increased anterior translation with the Lachman test (9.2mm, p = 0.50). This reconstruction restored the pivot shift to the intact state. (1.25mm, p = 0.73). Combined intraarticular and extraarticular reconstruction restored the Lachman (6.2mm, p = 2.11) and pivot shift (−3.75mm, p = 0.41) to the intact state. There was no significant difference between intraarticular alone and combined intraarticular and extraarticular reconstruction. (p = 1.88). Isometry: The ideal tunnel position calculated by the navigation system was identified over the lateral femoral condyle, beneath the mid-portion of the LCL. The anisometry for the ideal tunnel position was significantly lower (5.9mm; SD = 1.8mm; P<0.05) than the anisometry of the actual graft position (14.9mm; SD = 4mm), the top of the LCL (13.9mm; SD = 4.3mm) and the top of the septum (12mm; SD = 2.4mm). In the isolated acute ACL deficient knee, the addition of a lateral extraarticular sling to anatomic intraarticular ACL reconstruction provides little biomechanical advantage and is not routinely recommended. Isolated lateral extraarticular sling does control the pivot shift, and may be an option in the revision setting or in the lower demand patient with functional instability. Additionally, the location of the femoral tunnel traditionally used results in a significantly more anisometric graft than the navigation's system mathematical ideal location. However, the location of this ideal tunnel placement lies beneath mid-portion of the fibers of the LCL, which would not be clinically feasible