Advertisement for orthosearch.org.uk
Results 1 - 20 of 27
Results per page:
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 77 - 77
11 Apr 2023
Nguyen K Torkan L Bryant T Wood G Ploeg H
Full Access

This study compared the pullout forces of the initial implantation and the “cement-in-cement” revision technique for short and standard-length (125 mm vs. 150 mm) Exeter. ®. V40 femoral stems used in total hip arthroplasty (THA). The idea that the pullout force for a double taper slip stem is relative to the force applied to the femur and that “cement-in-cement” revision provides the same reproduction of force. A total sample size of 15 femoral stems were tested (Short, n = 6 and Standard, n = 9). 3D printed fixtures for repeatable sample preparation were used to minimize variance during testing. To promote stem subsidence and to simulate an in vivo environment, the samples were placed in an incubator at 37°C at 100% humidity and experienced a constant compressive loading of 1335 N for 14 days. The samples underwent a displacement-controlled pullout test. After the initial pullout test, “cement-in-cement” revision will be performed and tested similar to the initial implantation to observe the efficacy of the revision technique. To compare the pullout forces between the two groups, a Kruskal-Wallis test using a significance level of 0.05 was conducted. The mean maximum pullout force for the short and standard-length femoral stems were 3939 ± 1178 N and 5078 ± 1168 N, respectively. The Kruskal-Wallis test determined no statistically significant difference between the two groups for the initial implantation (p = 0.13). The “cement-in-cement” revision pullout force will be conducted in future testing. This study demonstrated the potential use of short stem designs for THA as it provides similar levels of fixation as the standard-length femoral stem. The potential benefits for using a short stem design would be providing similar load transfer to the proximal femur, preserving proximal metaphyseal femoral bone in primary replacement, and reducing the invasiveness during revision


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 17 - 17
17 Nov 2023
Naeem H Maroy R Lineham B Stewart T Harwood P Howard A
Full Access

Abstract. OBJECTIVES. To determine if force measured using a strain gauge in circular external fixation frames is different for 1) different simulated stages of bone healing, and for 2) fractures clinically deemed either united or un-united. METHODS. In a laboratory study, 3 similar Ilizarov frame constructs were assembled using a Perspex bone analogue. Constructs were tested in 10 different clinical situations simulating different stages of bone healing including with the bone analogue intact, with 1,3 and 50mm gaps, and with 6 materials of varying stiffness's within the 50mm gap. A Bluetooth strain gauge was inserted across the simulated fracture focus, replacing one of the 4 threaded rods used to construct the frame. Constructs were loaded to 700N using an Instron testing machine and maximum force during loading was measured by the strain gauge. Testing was repeated with the strain gauge replacing each of the 4 threaded rods in turn, with measurements being repeated 3 times, across all 3 frame constructs for all 10 simulated clinical situations (n=360). Force measurements between the situations were compared using a Kruskal-Wallis test (KW) and a post-hoc Steel test was used for multiple comparison against control (intact bone model). Additionally, a pilot study has been initiated to assess clinical efficacy of the strain gauge measurement in patients with circular frames. The strain gauge replaced the anterior rod across the fracture focus for each patient. Patients were asked to step on a weighing scale with their affected limb, and maximum weight transfer through the limb and maximal force measured in the frame were recorded. This was repeated 3 times and a mean ratio of force to weight through affected limb was calculated for each patient. The clinical situation at each measurement was designated as united or un-united by one of the senior authors for analysis. Force measurements between the situations were compared using a Wilcoxon-Mann-Whitney test. RESULTS. In the laboratory study, including all constructs with the strain gauge in all positions, a statistically significant relationship between model stability and force measured was identified (KW test for overall relationship p<0.0001). The largest force was measured in the model with a 50mm gap (median 170N, IQR 155–192, range 83–213) and the smallest in the intact bone model (median 3N, IQR 1–8, range 0–11). Multiple comparison testing found a significant difference between intact bone and all the unstable situations (p=0.002 or better). Examining initial results from our pilot clinical study, nine measurements were available in seven patients. Three of these were taken in patients with fractures yet to unite, six in patients where union has since been confirmed clinically. The median force measured was significantly greater where the fracture was not united (median 1.66 N/kg, range 1.07–1.99 vs 0.12 N/kg, range 0.05–0.73, p=0.02). CONCLUSIONS. This laboratory study demonstrates that force measurement may be different at different stages of healing, and although only limited data was available, a pilot clinical study showed a significant relationship between the force measured and clinical union of the patient's fracture. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 141 - 141
1 Nov 2021
Moretti B
Full Access

Aim. This study aims to define the normal postoperative presepsin kinetics in patients undergoing primary cementless total hip replacement (THR). Methods. Patients undergoing primary cementless THR at our Institute were recruited. At enrollment anthropometric data, smocking status, osteoarthritis stage according to Kellgren and. Lawrence, Harris Hip Score (HHS), drugs assumption and comorbidities were recorded. All the patients underwent serial blood tests, including complete blood count, presepsin (PS) and C-Reactive Protein (CRP) 24 hours before arthroplasty and at 24-, 48-, 72- and 96-hours postoperatively and at 3-, 6- and 12-months follow-up. Statistical analysis was performed with SPSS v25.0 (SPSS Inc, Chicago, IL, USA). The Wilcoxon and Kruskal-Wallis tests followed by the Dunn multiple comparison post hoc tests were carried out. Correlations between PS, CRP and TOT were assessed using the Spearman rank correlation coefficient. P values below 0.05 were considered significant. Results and conclusion. A total of 96 patients were recruited (51 female; 45 male; mean age= 65.74±5.58) were recruited. The mean PS values were: 137.54 pg/ml at baseline, 192.08 pg/ml at 24-hours post-op; 254.85 pg/ml at 48-hours post-op; 259 pg/ml at 72-hours post-op; 248.6 pg/ml at 96-hour post-op; 140.52 pg/ml at 3-months follow-up; 135.55 pg/ml at 6-months follow-up and 130.11 pg/ml at 12-months follow-up. In two patients (2.08%) a soft-tissue infection was observed; in these patients higher levels (>350pg/mL) were recorded at 3-months follow-up. The lack of a presepsin decrease at 96 hours post-operatively should be a predictive factor of infection


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 52 - 52
1 Mar 2021
Zaribaf F Gill H Pegg E
Full Access

Abstract. Objectives. Oil-based fluids can be used to enhance the properties of polyethylene materials. For example, vitamin E infused polyethylene has a superior oxidation resistance and Lipiodol infused polyethylene has an enhanced X-ray attenuation. The aim of this study was to evaluate the long-term influence of oily fluid on the chemical, physical and tensile properties of polyethylene. Methods. An accelerated ageing procedure (an elevated temperature (80. °. C) for four weeks in air. 1. ) was used to investigate the oxidative stability (ASTM F2012-17). 2. , tensile (ISO 527). 3. and thermal properties. 4. of oil treated polyethylene (n=5, GUR 1050, Celanese, Germany)and compared with clinically used polyethylene controls (oil-free standard and thermally treated polyethylene). All the experiments were performed on aged and unaged specimens in accordance to international standards and compared to currently available literature. A Kruskal-Wallis test was performed using a custom MATLAB code (R2017a, USA); with p < 0.05 considered statistically significant. Results. Samples treated with an oil (Vitamin E or Lipiodol) had a higher oxidation stability than currently used medical grade polyethylene, indicated by a smaller increase in oxidation index after ageing (Vitamin E 36%, Lipiodol 40%, untreated 136 %, thermally treated 164%). The mechanical degradation of oil treated polyethylene was also less significant than the untreated controls, as all the tensile properties of oil treated polyethylene after ageing were significantly higher than the standard controls (p>0.05). There was also no alteration in the percentage crystallinity of oil treated samples after ageing. Conclusion. The result of this study indicate that the presence of an oily fluid in polyethylene does not reduce its oxidative stability or tensile properties, providing improved material properties for long term implant applications. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 45 - 45
1 Nov 2021
Ramirez SC Stoker A Cook J Ma R
Full Access

Introduction and Objective. Anterior cruciate ligament reconstruction (ACLR) with tendon autografts is the “gold standard” technique for surgical treatment of ACL injuries. Common tendon graft choices include patellar tendon (PT), semitendinosus/gracilis “hamstring” tendon (HT), or quadriceps tendon (QT). Healing of the graft after ACLR may be affected by graft type since the tissue is subjected to mechanical stresses during post-operative rehabilitation that play important roles in graft integration, remodeling and maturation. Abnormal mechanical loading can result in high inflammatory and degradative processes and altered extracellular matrix (ECM) synthesis and remodeling, potentially modifying tissue structure, composition, and function. Because of the importance of load and ligamentization for tendon autografts, this study was designed to compare the differential inflammatory and degradative metabolic responses to loading by three tendon types commonly used for autograft ACL reconstruction. Materials and Methods. With IRB approval (IRB # 2009879) and informed patient consent, portions of 9 QT, 7 PT and 6 HT were recovered at the time of standard of care ACLR surgeries. Tissues were minced and digested in 0.2 mg/ml collagenase solution for two hours and were then cultured in 10% FBS at 5% CO. 2. , 37°C, and 95% humidity. Once confluent, cells were plated in Collagen Type I-coated BioFlex® plates (1 × 10. 5. cells/well) and cultured for 2 days prior to the application of strain. Then, media was changed to supplemented DMEM with 2% FBS for the application of strain. Fibroblasts were subjected to continuous mechanical stimulation (2-s strain and 10-s relaxation at a 0.5 Hz frequency) at three different elongation strains (mechanical stress deprivation-0%, physiologic strain-4%, and supraphysiological strain-10%). 9. for 6 days using the Flexcell FX-4000T strain system. Media was tested for inflammatory biomarkers (PGE2, IL-8, Gro-α, and MCP-1) and degradation biomarkers (GAG content, MMP-1, MMP-2, MMP-3, TIMP-1, and TIMP-2). Significant (p<0.05) difference between graft sources were assessed with Kruskal-Wallis test and post-hoc analysis. Results are reported as median± interquartile range (IQR). Results. Differences in Inflammation-Related Biomarker Production (Figure 1): The production of PGE2 was significantly lower by HT fibroblasts compared to both QT and PT fibroblasts at all timepoints and strain levels. The production of Gro-α was significantly lower by HT fibroblasts compared to QT at all time points and strain levels, and significantly lower than PT on day 3 at 0% strain, and all strain levels on day 6. The production of IL-8 by PT fibroblasts was significantly lower than QT and HT fibroblast on day 3 at 10% strain. Differences in Degradation-Related Biomarker Production (Figure 2): The production of GAG by HT fibroblasts was significantly higher compared to both QT and PT fibroblasts on day 6 at 0% strain. The production of MMP-1 by the QT fibroblasts was significantly higher compared to HT fibroblasts on day 3 of culture at all strain levels, and in the 0% and 10% strain levels on day 6 of culture. The production of MMP-1 by the QT fibroblasts was significantly higher compared to PT fibroblasts at in the 0% and 4% strain groups on day 3 of culture. The production of TIMP-1 by the HT fibroblasts was significantly lower compared to PT fibroblasts on day 3 of culture. Conclusions. The results of this study identify potentially clinically relevant difference in the metabolic responses of tendon graft fibroblasts to strain, suggesting a lower inflammatory response by hamstring tendon fibroblasts and higher degradative response by quadriceps tendon fibroblasts. These responses may influence ACL autograft healing as well as inflammatory mediators of pain in the knee after reconstruction, which may have implications regarding graft choice and design of postoperative rehabilitation protocols for optimizing outcomes for patients undergoing ACL reconstruction. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 48 - 48
1 Nov 2021
Bundkirchen K Ye W Xu B Krettek C Relja B Neunaber C
Full Access

Introduction and Objective. In multiple trauma patients, as well as in the healing of isolated fractures (Fx) with heavy bleeding (trauma haemorrhage, TH), complications occur very often. This is particularly evident in elderly patients over 65 years of age. Since these accompanying circumstances strongly influence the clinical course of treatment, the influence of age on bone regeneration after femoral fracture and severe blood loss was investigated in this study. Materials and Methods. 12 young (17–26 weeks) and 12 old (64–72 weeks) male C57BL / 6J mice per group were examined. The fracture group Fx underwent an osteotomy after applying an external fixator. The THFx group also received blood pressure-controlled trauma hemorrhage (35 mmHg for 90 minutes) and reperfusion with Ringer's solution for 30 minutes. The Sham group received only the catheter and one external fixator. μCT scans of the femora were performed in vivo after 2 weeks and ex vivo after 3 weeks. Histological and biomechanical examinations were also carried out. The statistical significance was set at p ≤ 0.05. The non-normally distributed data were analyzed using the Mann-Whitney-U or Kruskal-Wallis test. Results. The histology showed less mineralized bone in the fracture gap in old animals of the Fx (25.41% [1.68%]) and THFx groups (25.50% [4.07%]) compared with the young ones (34.20% [6.36%], p = 0.003; 34.31% [5.12%], p=0.009). Moreover, a severe blood loss lead to more cartilage in both young (6.91% [5.08%]) and old animals (4.17% [1.42%]) compared to animals with only a fracture (2, 45% [1.04%], p=0.004; 2.95% [1.12%], p=0.032). In old animals (11.37 / nm. 2. [17.17 / nm. 2. ]) in contrast the young mice with an isolated fracture (33.6/nm. 2. [8.83/nm. 2. ]) fewer osteoclasts were present (p=0.009). Therefore, the severe blood loss further reduced the number of osteoclasts only in young animals (16.83/nm. 2. [6.07/nm. 2. ]) (p=0.004). In the in vivo μCT, after 2 weeks, a lower volume of bone, cortex and callus was found in old THFx animals (3.14 mm. 3. [0.64 mm. 3. ]); 1.01 mm. 3. [0.04 mm. 3. ]; 2.07 mm. 3. [0.57 mm. 3. ]) compared with the Fx animals (4.29 mm. 3. [0.74 mm. 3. ], p=0.008; 1.18 mm. 3. [0, 25 mm. 3. ], p=0.004; 3.02 mm. 3. [0.77 mm. 3. ], p=0.008) After 3 weeks, the ex vivo μCT scans also showed a reduced callus percentage in old THFx animals (61.18% [13.9 9%]), as well as a low number of trabeculae (1.81 mm. -1. [0.23 mm. -1. ]) compared to animals without blood loss (68.72% [15.71%], p = 0.030; 2.06mm. -1. [0.37mm. -1. ], p=0.041). In the biomechanical test, a reduced elasticity limit of the old THFx mice (7.75 N [3.33 N]) in contrast to the old Fx (10.24 N [3.32 N]) animals was shown (p=0.022). Conclusions. A severe blood loss has a higher negative effect on the healing, morphometry, and biomechanical properties of previously fractured femora in old compared to young individuals


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_3 | Pages 86 - 86
1 Apr 2018
Van Rossom S Khatib N Van Assche D Holt C Jonkers I
Full Access

Healthy cartilage is essential for optimal joint function. Although, articular cartilage defects are highly prevalent in the active population and might hamper joint function, the effect of articular cartilage defects on knee contact forces and pressures is not yet documented. Therefore, the present study compared knee contact forces and pressures between patients with a tibiofemoral cartilage defect and healthy controls. This might provide additional insights in movement adaptations and the role of altered loading in the progression from defect to OA. Experimental gait data was collected in 15 patients with isolated articular cartilage defects (8 medial-affected, 7 lateral-affected) and 19 healthy asymptomatic controls and was processed using a musculoskeletal model to calculate contact forces and pressures. Differences between medial-affected, lateral-affected and controls were evaluated using Kruskal-Wallis tests and individually compared using Mann-Whitney-U tests (alpha <0.05). The lateral-affected group walked significantly slower compared to the healthy controls. No adaptations in the movement pattern that resulted in decreased loading on the injured condyle were observed. Additionally, the location of loading was not significantly affected. The current results suggest that isolated cartilage defects do not induce changes in the knee joint loading pattern. Consequently, the involved condyle will be equally loaded, indicating that a similar amount of force should be distributed over the remaining cartilage surrounding the articular cartilage defect and may cause local degenerative changes in the cartilage. This in combination with inflammatory responses might play a key role in the progression from articular cartilage defect to a more severe OA phenotype


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_4 | Pages 91 - 91
1 Apr 2018
Bundkirchen K Macke C Reifenrath J Angrisani N Schäck LM Noack S Welke B Krettek C Neunaber C
Full Access

Purpose. In patients with multiple trauma delayed fracture healing is often diagnosed, but the pathomechanisms are not well known yet. The purpose of the study is to evaluate the effect of a severe hemorrhagic shock on fracture healing in a murine model. Methods. 10 male C57BL/6N mice per group (Fx, TH, THFx, Sham) and point in time were used. The Fx-group received an osteotomy after implantation of a fixateur extern. The TH-group got a pressure controlled hemorrhagic shock with a mean arterial blood pressure of 35 mmHg over 90 minutes. Resuscitation with 4 times the shed blood volume of Ringer solution was performed. The THFx group got both. Sham-animals received the implantation of a catheter and a fixateur extern but no blood loss or osteotomy. After 1, 2, 3, 4 or 6 weeks the animals were sacrificed. For the biomechanics the bones were analyzed via X-ray, µCT and underwent a 3-point bending test. The nondecalcified histology based on slices of Technovit 9100. The signaling pathway was analyzed via RT. 2. Profiler™ PCR Array Mouse Osteoporosis, Western Blot and Quantikine ELISA for RankL and OPG. Statistical significance was set at p < 0.05. Comparisons between groups were performed using the Mann–Whitney U (Fx vs. THFx) or Kruskal-Wallis Test (other groups). Results. The experiment showed that after 1 week the bones of the Fx- and THFx-mice were macroscopically instable. After 2 weeks the Fx-group showed macroscopically a stable bridging whereas the bones of the THFx-group were partly not stable bridged. 3 weeks after surgery the bones of both groups were stable bridged. Analysis via µCT showed that trauma hemorrhage leads to decreased density of the bone and callus and also to increased share of callus per bone volume after 2 weeks. The 3-point-bending test showed that the maximum bending moment is decreased in the group THFx compared to Fx after 2 weeks. The studies of the histology showed after 2 weeks a decrease in bone and cartilage after trauma-hemorrhage by optical analysis of photographs of the slices. The analyses of the signaling pathway pointed to an involvement of the RankL/Opg and IL6 pathway. Conclusion. A hemorrhagic shock has a negative effect on fracture healing in terms of reduced density of the bone and callus, increased share of callus per bone volume, decreased maximum bending moment, reduced mineralization of the callus and leads to changes in the RankL/Opg and IL6 pathways


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_3 | Pages 95 - 95
1 Apr 2018
Kaya CS Akcan O Ates F Yucesoy CA
Full Access

Background. Administration of Botulinum toxin type A (BTX-A) in patients with spastic cerebral palsy aims to improve mobility by increasing joint range of motion and decreasing passive resistance. However, our recent animal experiments indicated that BTX-A can decrease muscle”s length range of force exertion (Lrange), and increase its passive forces and extracellular matrix (ECM) collagen content. Moreover, BTX-A injected into the tibialis anterior (TA) was shown to spread into non-injected synergistic muscles in the whole anterior crural compartment. These effects that contradict the treatment aims deserve further investigation. Aim. To test in a rat model if: (1) BTX-A injected into the medial and lateral gastrocnemius (GM&GL) muscles spreads into the synergistic soleus (SOL) as well as antagonistic TA and extensor digitorum longus (EDL). (2) The muscles exposed show a wider Lrange, decreased muscle passive force and reduced ECM collagen. Methods. 2×0.1U/20µl of BTX-A (BTX-A group, n=6) or only 2×20µl of saline (Control group, n=6) were prepared and each was injected into the mid-belly of the GM and GL separately. 5 days post injection, forces of all muscles were measured in passive state and also on activation. The GM&GL length was changed whereas; all other muscles were kept at constant length. After biomechanical testing, the muscles were histologically analyzed using Gomori trichrome stain to detect ECM collagen. Two-way ANOVA (factors: GM&GL length and animal group) was used to assess BTX-A effects on forces, and the Kruskal-Wallis test was used to test the change in proportion of collagenous tissue for each muscle. Differences were considered significant at p<0.05. Results. Injected muscles: ANOVA showed significant main effects of both factors on GM&GL total forces and a significant interaction. Force reductions are more pronounced at shorter lengths (increase from 80.8% to 88.4% with decreasing length). Lrange decreased (by 24.1%). ANOVA showed significant main effects of only muscle length on GM&GL passive forces and no significant interaction. Non-injected muscles: ANOVA showed significant main effects of both factors (for SOL), or only of BTX-A (for TA and EDL) only on muscle total forces, but no significant interaction. Force drops for the SOL (89.8%) and anterior crural muscles (57.0% and 51.0% for TA and EDL) do indicate spread of BTX-A intra- and extra-compartmentally. Histological analyses showed increased ECM collagen contents of BTX-A group for the GM&GL, TA, and EDL. Conclusion. Narrowed Lrange and increased ECM collagen content are not in accord with the clinical purpose of the treatment. BTX-A did not reduce passive forces, but did not cause an increase either. Remarkably, the results show that BTX-A leakage is a major issue that can affect muscles of even antagonistic muscle compartments. Hence, our animal experiments indicate much more complex BTX-A effects than considered, which requires further testing in patients


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_2 | Pages 100 - 100
1 Jan 2017
García-Alvarez F Desportes P Estella R Alegre-Aguarón E Piñas J Castiella T Larrad L Albareda J Martínez-Lorenzo M
Full Access

Mesenchymal stem cells (MSCs) are self-renewing, multipotent cells that could potentially be used to repair injured cartilage in diseases. The objetive was to analyze different sources of human MSCs to find a suitable alternative source for the isolation of MSCs with high chondrogenic potential. Femoral bone marrow, adipose tissue from articular and subcutaneous locations (hip, knee, hand, ankle and elbow) were obtained from 35 patients who undewent different types of orthopedic surgery (21 women, mean age 69.83 ± 13.93 (range 38–91) years. Neoplasic and immunocompromised patients were refused. The Ethical Committee for Clinical Research of the Government of Aragón (CEICA) approved the study and all patients provided informed consent. Cells were conjugated wiith monoclonal antibodies. Cell fluorescence was evaluated by flow cytometry using a FACSCalibur flow cytometer and analysed using CellQuest software (Becton Dickinson). Chondrogenic differentiation of human MSCs from the various tissues at P1 and P3 was induced in a 30-day micropellet culture [Pittenger et al., 1999]. To evaluate the differentiation of cartilaginous pellet cultures, samples were fixed embedded in paraffin and cut into 5- υm-thick slices. The slices were treated with hematoxylin-eosin and safranin O (Sigma-Aldrich). Each sample was graded according to the Bern Histological Grading Scale [Grogan et al., 2006], which is a visual scale that incorporates three parameters indicative of cartilage quality: uniform and dark staining with safranin O, cell density or extent of matrix produced and cellular morphology (overall score 0–9). Stained sections were evaluated and graded by two different researchers under a BX41 dual viewer microscope or a Nikon TE2000-E inverted microscope with the NIS-Elements software. Statistics were calculated using bivariate analysis. Pearson's χ2 or Fisher's exact tests were used to compare the Bern Scores of various tissues. To evaluate the cell proliferation, surface marker expression and tissue type results, ANOVA or Kruskal-Wallis tests were used, depending on the data distribution. Results were considered to be significant when p was < 0.05. MSCs from all tissues analysed had a fibroblastic morphology, but their rates of proliferation varied. Subcutaneous fat derived MSCs proliferated faster than bone marrow. MSCs from Hoffa fat, hip and knee subcutaneous proliferated slower than MSCs from elbow, ankle and hand subcutaneous. Flow cytometry: most of cells lacked expression of CD31, CD34, CD36, CD117 (c-kit), CD133/1 and HLA-DR. At same time 95% of cells expressed CD13, CD44, CD59, CD73, CD90, CD105, CD151 y CD166. Fenotype showed no differences in cells from different anatomic places. Cells from hip and knee subcutaneous showed a worst differentiation to hyaline cartilage. Hoffa fat cells showed high capacity in transforming to hyaline cartilage. Cells from different anatomic places show different chondrogenic potential that has to be considered to choose the cells source


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 48 - 48
1 Jan 2017
Wesseling M Bosmans L Van Dijck C Wirix-Speetjens R Jonkers I
Full Access

Children with cerebral palsy (CP) often present femoral bone deformities not accounted for in generic musculoskeletal models [1,2]. MRI-based models can be used to include subject-specific muscle paths [3,4], although this is a time-demanding process. Recently, non-rigid deformation techniques have been used to transform generic bone geometry, including muscle points, onto personalized bones [5]. However, it is still unknown to what extent such an approximation of subject-specific detail affects calculated hip contact forces (HCFs) during gait in CP children. Seven children diagnosed with diplegic CP walked independently at self-selected speed. 3D marker trajectories were captured using Vicon (Oxford Metrics, UK) and force data was measured using two AMTI force platforms (Watertown, MA). MR-images were acquired (Philips Ingenia 1.5T) of all subjects lying supine. Firstly, a generic model [6] was scaled using the marker positions of a static pose. Secondly, a MRI-model containing the subject-specific bone structures and muscle paths of all hip and upper leg muscles was created [3]. Thirdly, the generic femur and pelvis geometries and muscle points were transformed onto the image-based femur and pelvis using an advanced non-rigid deformation procedure (Materialise N.V.). For all models, further analyses were performed in OpenSim 3.1 [7]. A kalman smoother procedure was used to calculate joint angles [8]. Muscle forces were calculated using a static optimization minimizing the sum of squared muscle activities. Next, HCFs were calculated and normalized to body weight (BW). First and second peak HCFs were determined and used for a Kruskal-Wallis test to determine differences between models. In case of a significant difference, a post-hoc rank-based multiple comparison test with Bonferonni adjustment was used. Further, average absolute differences in muscle points between the models was calculated, as well as average differences in moment arm lengths (MALs), reflecting muscle function. Where the scaled generic muscle points differed on average 2.49cm from the MRI points, the non-rigidly deformed points differed 1.54cm from the MRI muscle points. Specifically, the tensor fascia latae differed most between the deformed and MRI models (11.7cm). When considering MALs, the gluteii muscles present an altered function for the generic and deformed models compared to the MRI model for all degrees of freedom of the hip at the time of both HCF peaks. The differences between models resulted in a significantly increased second peak HCF for the MRI models compared to the generic models (first peak average HCF: 3.88BW, 3.95BW and 4.90BW; second peak average HCF: 3.03BW, 4.89BW and 5.32BW for the generic, MRI and non-rigidly deformed models respectively). Although not significantly different, the deformed models calculated slightly increased HCFs compare to the MRI models. The generic models underestimated HCFs compared to the MRI models, while the non-rigidly deformed models slightly overestimated HCFs. However, differences between the deformed and MRI models in terms of muscle points and MALs remain, specifically for the gluteii muscles. Therefore, further user-guided modification of the model based on MR-images will be necessary


Bone & Joint Research
Vol. 6, Issue 7 | Pages 414 - 422
1 Jul 2017
Phetfong J Tawonsawatruk T Seenprachawong K Srisarin A Isarankura-Na-Ayudhya C Supokawej A

Objectives

Adipose-derived mesenchymal stem cells (ADMSCs) are a promising strategy for orthopaedic applications, particularly in bone repair. Ex vivo expansion of ADMSCs is required to obtain sufficient cell numbers. Xenogenic supplements should be avoided in order to minimise the risk of infections and immunological reactions. Human platelet lysate and human plasma may be an excellent material source for ADMSC expansion. In the present study, use of blood products after their recommended transfusion date to prepare human platelet lysate (HPL) and human plasma (Hplasma) was evaluated for in vitro culture expansion and osteogenesis of ADMSCs.

Methods

Human ADMSCs were cultured in medium supplemented with HPL, Hplasma and a combination of HPL and Hplasma (HPL+Hplasma). Characteristics of these ADMSCs, including osteogenesis, were evaluated in comparison with those cultured in fetal bovine serum (FBS).


Bone & Joint Research
Vol. 7, Issue 5 | Pages 362 - 372
1 May 2018
Ueda Y Inui A Mifune Y Sakata R Muto T Harada Y Takase F Kataoka T Kokubu T Kuroda R

Objectives

The aim of this study was to investigate the effect of hyperglycaemia on oxidative stress markers and inflammatory and matrix gene expression within tendons of normal and diabetic rats and to give insights into the processes involved in tendinopathy.

Methods

Using tenocytes from normal Sprague-Dawley rats, cultured both in control and high glucose conditions, reactive oxygen species (ROS) production, cell proliferation, messenger RNA (mRNA) expression of NADPH oxidase (NOX) 1 and 4, interleukin-6 (IL-6), matrix metalloproteinase (MMP)-2, tissue inhibitors of matrix metalloproteinase (TIMP)-1 and -2 and type I and III collagens were determined after 48 and 72 hours in vitro. In an in vivo study, using diabetic rats and controls, NOX1 and 4 expressions in Achilles tendon were also determined.


Bone & Joint Research
Vol. 6, Issue 5 | Pages 315 - 322
1 May 2017
Martinez-Perez M Perez-Jorge C Lozano D Portal-Nuñez S Perez-Tanoira R Conde A Arenas MA Hernandez-Lopez JM de Damborenea JJ Gomez-Barrena E Esbrit P Esteban J

Objectives

Implant-related infection is one of the most devastating complications in orthopaedic surgery. Many surface and/or material modifications have been developed in order to minimise this problem; however, most of the in vitro studies did not evaluate bacterial adhesion in the presence of eukaryotic cells, as stated by the ‘race for the surface’ theory. Moreover, the adherence of numerous clinical strains with different initial concentrations has not been studied.

Methods

We describe a method for the study of bacterial adherence in the presence of preosteoblastic cells. For this purpose we mixed different concentrations of bacterial cells from collection and clinical strains of staphylococci isolated from implant-related infections with preosteoblastic cells, and analysed the minimal concentration of bacteria able to colonise the surface of the material with image analysis.


Bone & Joint Research
Vol. 6, Issue 3 | Pages 123 - 131
1 Mar 2017
Sasaki T Akagi R Akatsu Y Fukawa T Hoshi H Yamamoto Y Enomoto T Sato Y Nakagawa R Takahashi K Yamaguchi S Sasho T

Objectives

The aim of this study was to investigate the effect of granulocyte-colony stimulating factor (G-CSF) on mesenchymal stem cell (MSC) proliferation in vitro and to determine whether pre-microfracture systemic administration of G-CSF (a bone marrow stimulant) could improve the quality of repaired tissue of a full-thickness cartilage defect in a rabbit model.

Methods

MSCs from rabbits were cultured in a control medium and medium with G-CSF (low-dose: 4 μg, high-dose: 40 μg). At one, three, and five days after culturing, cells were counted. Differential potential of cultured cells were examined by stimulating them with a osteogenic, adipogenic and chondrogenic medium.

A total of 30 rabbits were divided into three groups. The low-dose group (n = 10) received 10 μg/kg of G-CSF daily, the high-dose group (n = 10) received 50 μg/kg daily by subcutaneous injection for three days prior to creating cartilage defects. The control group (n = 10) was administered saline for three days. At 48 hours after the first injection, a 5.2 mm diameter cylindrical osteochondral defect was created in the femoral trochlea. At four and 12 weeks post-operatively, repaired tissue was evaluated macroscopically and microscopically.


Bone & Joint Research
Vol. 5, Issue 2 | Pages 37 - 45
1 Feb 2016
Roh YH Kim W Park KU Oh JH

Objectives

This study was conducted to evaluate the cytokine-release kinetics of platelet-rich plasma (PRP) according to different activation protocols.

Methods

Two manual preparation procedures (single-spin (SS) at 900 g for five minutes; double-spin (DS) at 900 g for five minutes and then 1500 g for 15 minutes) were performed for each of 14 healthy subjects. Both preparations were tested for platelet activation by one of three activation protocols: no activation, activation with calcium (Ca) only, or calcium with a low dose (50 IU per 1 ml PRP) of thrombin. Each preparation was divided into four aliquots and incubated for one hour, 24 hours, 72 hours, and seven days. The cytokine-release kinetics were evaluated by assessing PDGF, TGF, VEGF, FGF, IL-1, and MMP-9 concentrations with bead-based sandwich immunoassay.


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 4 | Pages 602 - 608
1 Apr 2010
Drobnič M Radosavljevič D Cör A Brittberg M Stražar K

We compared the quality of debridement of chondral lesions performed by four arthroscopic (SH, shaver; CU, curette; SHCU, shaver and curette; BP, bipolar electrodes) and one open technique (OPEN, scalpel and curette) which are used prior to autologous chondrocyte implantation (ACI). The ex vivo simulation of all five techniques was carried out on six juvenile equine stifle joints. The OPEN, SH and SHCU techniques were tested on knees harvested from six adult human cadavers.

The most vertical walls with the least adjacent damage to cartilage were obtained with the OPEN technique. The CU and SHCU methods gave inferior, but still acceptable results whereas the SH technique alone resulted in a crater-like defect and the BP method undermined the cartilage wall. The subchondral bone was severely violated in all the equine samples which might have been peculiar to this model. The predominant depth of the debridement in the adult human samples was at the level of the calcified cartilage. Some minor penetrations of the subchondral end-plate were induced regardless of the instrumentation used.

Our study suggests that not all routine arthroscopic instruments are suitable for the preparation of a defect for ACI. We have shown that the preferred debridement technique is either open or arthroscopically-assisted manual curettage. The use of juvenile equine stifles was not appropriate for the study of the cartilage-subchondral bone interface.


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 10 | Pages 1396 - 1401
1 Oct 2007
Hirpara KM Sullivan PJ Raheem O O’Sullivan ME

We compared the bulking and tensile strength of the Pennington modified Kessler, Cruciate and the Savage repairs in an ex vivo model. A total of 60 porcine tendons were randomised to three groups, half repaired using a core suture alone and the remainder employing a core and peripheral technique. The tendons were distracted to failure. The force required to produce a 3 mm gap, the ultimate strength, the mode of failure and bulking for each repair were assessed. We found that there was a significant increase in strength without an increase in bulk as the number of strands increased. The Cruciate repair was significantly more likely to fail by suture pullout than the Pennington modified Kessler or Savage repairs. We advise the use of the Savage repair, especially in the thumb, and a Cruciate when a Savage is not possible. The Pennington modified Kessler repair should be reserved for multiple tendon injuries.


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 7 | Pages 958 - 965
1 Jul 2008
Leong JJH Leff DR Das A Aggarwal R Reilly P Atkinson HDE Emery RJ Darzi AW

The aim of this study was to validate the use of three models of fracture fixation in the assessment of technical skills. We recruited 21 subjects (six experts, seven intermediates, and eight novices) to perform three procedures: application of a dynamic compression plate on a cadaver porcine model, insertion of an unreamed tibial intramedullary nail, and application of a forearm external fixator, both on synthetic bone models. The primary outcome measures were the Objective Structural Assessment of technical skills global rating scale on video recordings of the procedures which were scored by two independent expert observers, and the hand movements of the surgeons which were analysed using the Imperial College Surgical Assessment Device.

The video scores were significantly different for the three groups in all three procedures (p < 0.05), with excellent inter-rater reliability (α = 0.88). The novice and intermediate groups specifically were significantly different in their performance with dynamic compression plate and intramedullary nails (p < 0.05). Movement analysis distinguished between the three groups in the dynamic compression plate model, but a ceiling effect was demonstrated in the intramedullary nail and external fixator procedures, where intermediates and experts performed to comparable standards (p > 0.6). A total of 85% (18 of 21) of the subjects found the dynamic compression model and 57% (12 of 21) found all the models acceptable tools of assessment.

This study has validated a low-cost, high-fidelity porcine dynamic compression plate model using video rating scores for skills assessment and movement analysis. It has also demonstrated that Synbone models for the application of and intramedullary nail and an external fixator are less sensitive and should be improved for further assessment of surgical skills in trauma. The availability of valid objective tools of assessment of surgical skills allows further studies into improving methods of training.


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 6 | Pages 835 - 842
1 Jun 2009
Hart AJ Skinner JA Winship P Faria N Kulinskaya E Webster D Muirhead-Allwood S Aldam CH Anwar H Powell JJ

We carried out a cross-sectional study with analysis of the demographic, clinical and laboratory characteristics of patients with metal-on-metal hip resurfacing, ceramic-on-ceramic and metal-on-polyethylene hip replacements. Our aim was to evaluate the relationship between metal-on-metal replacements, the levels of cobalt and chromium ions in whole blood and the absolute numbers of circulating lymphocytes. We recruited 164 patients (101 men and 63 women) with hip replacements, 106 with metal-on-metal hips and 58 with non-metal-on-metal hips, aged < 65 years, with a pre-operative diagnosis of osteoarthritis and no pre-existing immunological disorders.

Laboratory-defined T-cell lymphopenia was present in13 patients (15%) (CD8+ lymphopenia) and 11 patients (13%) (CD3+ lymphopenia) with unilateral metal-on-metal hips. There were significant differences in the absolute CD8+ lymphocyte subset counts for the metal-on-metal groups compared with each control group (p-values ranging between 0.024 and 0.046). Statistical modelling with analysis of covariance using age, gender, type of hip replacement, smoking and circulating metal ion levels, showed that circulating levels of metal ions, especially cobalt, explained the variation in absolute lymphocyte counts for almost all lymphocyte subsets.