Advertisement for orthosearch.org.uk
Results 1 - 20 of 47
Results per page:
Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_19 | Pages 33 - 33
1 Dec 2014
van der Merwe W
Full Access

Background:

For the past four decades controversy surrounds the decision to retain or sacrifice the posterior cruciate ligament during a total knee arthroplasty. To our knowledge no study has been done to describe the effect of releasing the PCL on the range of motion of the knee.

Study design:

Case series


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_9 | Pages 5 - 5
1 Feb 2013
Phillips A Goubran A Searle D Naim S Mandalia V Toms A
Full Access

We sought to validate a method of measuring the range of motion of knees on radiographs as part of a new system of “Virtual Knee Clinics”. The range of motion of 52 knees in 45 patients were first obtained clinically with goniometers and compared to radiographs of these patients' knees in full active flexion and extension. Four methods of plotting the range of motion on the radiographs were compared. The intra-class correlation coefficient (ICC) for inter-rater reliability using the goniometer was very high; ICC=0.90 in extension and 0.85 in flexion. The best ICC for radiographic measurement in extension was 0.86 indicating substantial agreement and best ICC in flexion was 0.95 (method 4). ICC for intra-rater reliability was 0.98 for extension and 0.99 for flexion on radiographic measurements. Measuring range of motion of the knee has never previously been validated in the literature. This study has allowed us to set up a “Virtual Knee Clinic,” combining postal questionnaires and radiographic measurements as a surrogate for knee function. We aim to maintain high quality patient surveillance following knee arthroplasty, reduce our new to follow-up ratios in line with Department of Health guidelines and improve patient satisfaction through reduced travel to hospital outpatients


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_3 | Pages 27 - 27
1 Mar 2021
Pathy R Liquori B Gorton G Gannotti M
Full Access

To assess long and short term kinematic gait outcomes after rectus femoris transfers (RFT) in ambulatory children with cerebral palsy (CP). A retrospective review was conducted of ambulatory children with spastic diplegic CP, who had RFT plus motion analysis preoperatively and 1 year post-operatively. Those with 5 and 10 year post-operative motion analysis were also included. The primary variables were: peak knee flexion range of motion in swing (PKFSW), timing of peak knee flexion in swing as a percent of the gait cycle (PKF%GC), and knee range of motion from peak to terminal swing (KROM). Responders and non-responders were identified. Descriptive, kinematic and kinetic variables were evaluated as predictors of response. 119 ambulatory children (237 limbs) with spastic diplegic CP who had RFT were included. Mean age at surgery was 10.2 years (range 5.5 to 17.5). Sixty-seven participants were classified at GMFCS Level II and 52 at GMFCS Level III. All participants (237 limbs) had a preoperative and 1 year postoperative motion analysis. Motion analysis at 5 and 10 years post-operatively included 82 limbs and 28 limbs, respectively. Ninety-three (39%) limbs improved in both PKFSW and PKF%GC. PKFSW improved in 59% of limbs. Responders started 1.2 SD below the mean PKFSW preoperatively, and improved by an average of 1.9 SD to reach a normal range at 1 year post-operatively (p < 0.05). Improvement was maintained at 5 and 10 years postoperatively. Those at GMFCS level II were more likely [OR 1.71, CI 1.02, 2.89] to have improved PKFSW at 1 year postoperatively than those at GMFCS level III. PKF%GC improved in 70% of limbs. Responders had delayed PKF%GC, starting 10 SD above the mean (later in the gait cycle) preoperatively. Their timing improved towards normal values: 5 SD, 5.9 SD, 3.5 SD from the mean, (earlier in the gait cycle) at 1, 5 and 10 years postoperatively, respectively (p<0.05). KROM improved in only 24% of limbs. For all variables, there was a significant difference in mean preoperative values between responders and non-responders (p<0.05). RFT improves short and long-term kinematic gait outcomes. The majority of children responded to RFT with improvements in PKFSW or PKF%GC at 1, 5, and 10 years post RFT. GMFCS level is a predictor of improved PKFSW, with children at GMFCS Level II having an increased likelihood of improvement at 1 year post surgery. Children who have worse preoperative values of PKFSW, PKF%GC, and KROM have a greater potential for benefit from RFT. Characteristics associated with responders who maintain long term positive outcomes need to be identified


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_28 | Pages 99 - 99
1 Aug 2013
Anthony C McCunniff P McDermott S Albright J
Full Access

Variations in the pivot shift test have been proposed by many authors, though, a test comprised of rotatory and valgus tibial forces with accompanied knee range of motion is frequently utilised. Differences in applied forces between practitioners and patient guarding have been observed as potentially decreasing the reproducibility and reliability of the pivot shift test. We hypothesise that a low-profile pivot shift test (LPPST) consisting of practitioner induced internal rotatory and anterior directed tibial forces with accompanied knee range of motion can elicit significant differences in internal tibial rotation and anterior tibial translation between the anterior cruciate ligament (ACL) deficient and ACL sufficient knee. Fresh, frozen cadaver knees were used for this study. Four practitioners performed the LPPST on each ACL sufficient knee. The ACL of each knee was subsequently resected and each practitioner performed the LPPST on each ACL deficient knee. Our quantitative assessment utilised computer assisted navigation to sample (10Hz) the anterior translation and internal rotation of the tibia as the LPPST force vectors were applied. We subsequently pooled and averaged data from all four practitioners and analysed the entrance pivot (tibial reduction with knee range of motion from extension into flexion) and the exit pivot (tibial subluxation with knee range of motion from flexion into extension). We observed a significant difference in anterior tibial translation and internal tibial rotation in the ACL deficient vs. ACL sufficient knees during both the entrance and exit pivot phases of the LPPST. The entrance pivot (n=140) was found to have an average maximum anterior tibial translation of 7.83 mm in the ACL deficient knee specimens compared to 1.23 mm in the ACL sufficient knee specimens (p<0.01). We found the ACL deficient knees to exhibit an average maximum internal tibial rotation of 12.38 degrees compared to 11.24 degrees in the ACL sufficient specimens during the entrance pivot (p=0.04). The exit pivot (n=120) was found to have an average maximum anterior tibial translation of 7.82 mm in the ACL deficient knee specimens compared to 1.44 mm in the ACL sufficient knee specimens (p<0.01). The ACL deficient knees exhibited an average maximum internal tibial rotation of 12.44 degrees compared to 11.13 degrees in the ACL sufficient knee specimens during the exit pivot (p=0.02). Our results introduce a physical exam maneuver (LPPST) consisting of practitioner induced internal rotatory and anterior directed forces, with notable absence of valgus force, on the tibia while applying knee range of motion. Our results demonstrate that the LPPST can elicit significant anterior translation and internal rotary differences in an effort to differentiate between the ACL deficient and ACL sufficient knee. Our work will next seek to explore the clinical reproducibility of this physical exam maneuver


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_1 | Pages 60 - 60
1 Feb 2021
Lustig S Batailler C Servien E Foissey C
Full Access

Introduction. Increasingly young and active patients are concerned about revision arthroplasty forcing the manufacturers to think about revision prostheses that fit to this population while meeting the indications and fitting with bone losses and ligament deficiencies. One of those industrials claims that its system allows the surgeon to rise the constraint from a posterior stabilized (PS) prostheses to a semi-constraint total stabilized (TS) prostheses without modifying the gait pattern thanks to a similar single radius design. The aim of the study was to compare gait parameters in patients receiving either PS or TS knee prostheses. Methods. Nineteen patients in each groups were prospectively collected for this study and compared between each other. All subjects were assessed with a 3D knee kinematics analysis, performed with an optoelectronic knee assessment device (KneeKG®). Were measured for each knees range of motion (ROM) in flexion–extension, abduction–adduction, internal–external rotation and anterior–posterior displacement. Results. There were no significant kinematic differences between PS and TS groups. The ROM in flexion-extension was 44° in PS group vs 46° in TS group, the ROM in internal-external rotation was 5.5° in PS group vs 4°in TS group. Peak varus angle during loading was equal (2.5°) and higher in PS group during swing phases (5.5° vs 3.7°) without any significancy. There appeared to be less antero-posterior translation in the TS group (maximum posterior displacement of −1 mm vs −5 mm) linked to the larger central post-cam without any significancy. Conclusion. TS designed have comparable gait parameters than PS prostheses. Its use won't prejudice the patient concerning the walking pattern


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_3 | Pages 46 - 46
1 Mar 2021
Hiemstra L Kerslake S
Full Access

MPFL reconstruction has demonstrated a very high success rate with improved patella stability, physical function, and patient-reported outcomes. However technical error and a lack of consideration of anatomic risk factors have been shown to contribute to failure after MPFL reconstruction. Previous research has also reported a complication rate of 26% following surgery. The purposes of this study were to determine the re-dislocation rate, type and number of complications, and most common additional surgical procedures following MPFL reconstruction. Patients with symptomatic recurrent patellofemoral instability underwent an MPFL reconstruction (n = 268) and were assessed with a mean follow-up of 31.5 months (minimally 24-months). Concomitant procedures were performed in addition to the MPFL reconstruction in order to address significant anatomic or biomechanical characteristics. Failure of the patellofemoral stabilization procedure was defined as post-operative re-dislocation of the patella. Rates of complications and re-procedures were assessed for all patients. The re-dislocation rate following MPFL reconstruction was 5.6% (15/268). There were no patella fractures. A total of 49/268 patients (18.3%) returned to the operating room for additional procedures following surgery. The most common reason for additonal surgery was removal of symptomatic tibial tubercle osteotomy hardware in 24/268 patients (8.9%). A further 9.3% of patients underwent addtional surgery including revision MPFL reconstruction: with trochleoplasty 8/268 (3.0%), with tibial tubercule osteotomy 4/286 (1.5%) and with femoral derotation osteotomy 3/268 (1.1%); manipulation under anaesthesia for reduced knee range of motion 4/268 (1.5%); knee arthroscopy for pain 8/268 (3.0%); and cartilage restoration procedures 3/268 (1.1%). There was 1 case of wound debridement for surgical incision infection. MPFL reconstruction using an a la carte approach to surgical selection demonstrated a post-operative redislocation rate of 5.6%. The rate of complications following surgical stabilization was low, with the most common reason for additional surgery being removal of hardware


In total knee arthroplasty (TKA), both intravenous (IV) and/or intra-articular (IA) administration of tranexamic acid (TXA) were showed to reduce blood loss. Moreover, research suggesting TXA decreases postoperative knee swelling, but it is unknown whether this results in improved postoperative rehabilitation outcome. Thus, the aim of this study was to evaluate whether combined IV and IA administration of TXA would associate with improved early rehabilitation outcomes. In this institutional review board approved randomized controlled trial, 179 patients scheduled for unilateral TKA were randomized to one of three regimens: (1) IA administration of 1gm TXA at end of procedure only, (2) additional preoperative IV dose of 15 mg/kg 30min before tourniquet inflation, and (3) additional postoperative dose 4hrs after preoperative dose. Primary outcomes included knee range of motion, Knee Society Score (KSS) at 6-month postoperatively, haemoglobin drop at day-2 post-operatively, and transfusion rate. Secondary outcome was venous thromboembolism (VTE) complications. Baseline characteristics were comparable between the allocation groups. Patients in regimen (3) showed statistically significant better knee extension range (6.2°, 5.9°, 2.9°, p=0.01), and KSS (88.5, 89.9, 93.0, p=0.02) at 6-month postoperatively, and lesser drop in haemoglobin at day-2 post-operatively (2.72, 2.47, 1.75 g/dL, p=0) when compared with patients in other regimens. No patients required transfusion, or complicated by VTE. The combined administration of IA and IV TXA, including both preoperative and postoperative doses, associated with statistically significantly improved early rehabilitation outcomes. The improvement may be related to higher haemoglobin level and decreased knee swelling in patients having regimen (3). For any reader queries, please contact . cpk464@yahoo.com.hk


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 149 - 149
1 Jul 2020
Burkhart T Getgood A Abbott M Dentremont A
Full Access

Previous studies have identified the anterolateral complex (ALC) as having an important role in controlling anterolateral rotatory laxity following anterior cruciate ligament injury and subsequent reconstruction. In particular, injury to the iliotibial band (ITB) and its component deep (dITB) and capsulo-osseous (coITB) layers, have been shown to significantly correlate with different grades of the pivot-shift test in patients with acute ACL injuries. However, the kinematic properties of the capsulo-osseous layer of the ITB, throughout knee range of motion, are not fully understood. The purpose of this study was to quantify the kinematic behaviour of the capsulo-osseous layer of the ITB through various degrees of knee flexion. Ten fresh-frozen cadaveric knee specimens were dissected to expose the capsulo-osseous layer of the iliotibial band. Radiopaque beads were embedded, at standardized increments (12.5%, 25%, 50% and 75% of total length from proximal to distal), into the tissue and fluoroscopic images were taken from 0o to 105o of knee flexion in 15° increments. The positions of the beads were identified in each image and the length, width, and area changes of the capsulo-osseous layer were calculated. Comparisons of the total length of the anterior and posterior borders of the coITB through knee ROM were conducted using a two-way (8 knee angles by 2 borders) repeated measures analysis of variance (rm-ANOVA), whereas the effect of knee angle on isometry and total area changes was assessed using one-way rm-ANOVAs (α=0.05). There was a significant increase in the length of the anterior capsulo-osseous layer at flexion angles greater than 15o and on the posterior border at angles greater than 75 o with changes occurring primarily at 12.5 % of the total length. In addition, at all flexion angles the length changes were significantly larger in the anterior border compared to the posterior border. Meanwhile, non-homogenous decreases in width and area were found with increasing flexion angle. The distance between the capsulo-osseous layer insertion on the distal femur and proximal tibia significantly increased from 60o-105o, maximal changes occurred at 105o (9.64 [4.12] %, p = 0.003). The primary finding of this study was that the coITB behaved in a non-isometric fashion, with significant increases in length occurring at flexion angles greater than 15o. Moreover, these changes in length were non-homogenous across the different regions of the coITB that were investigated, with the greatest changes occurring in the proximal segments (0–25%). The data presented here suggest that coITB in flexion angles from 0o to 105o behaves in a non-isometric fashion, with the majority of its length change occurring in its proximal segment. Further quantification of the pathway that the coITB takes with respect to osseous landmarks may result in improvements in ALC procedures as an augmentation to ACL reconstruction, thereby potentially improving rotational stability and clinical outcomes


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 73 - 73
1 Feb 2020
Catani F Ensini A Zambianchi F Illuminati A Matveitchouk N
Full Access

Introduction. Robotics have been applied to total knee arthroplasty (TKA) to improve surgical precision in components’ placement, providing a physiologic ligament tensioning throughout knee range of motion. The purpose of the present study is to evaluate femoral and tibial components’ positioning in robotic-assisted TKA after fine-tuning according to soft tissue tensioning, aiming symmetric and balanced medial and lateral gaps in flexion/extension. Materials and Methods. Forty-three consecutive patients undergoing robotic-assisted TKA between November 2017 and November 2018 were included. Pre-operative radiographs were performed and measured according to Paley's. The tibial and femoral cuts were performed based on the individual intra-operative fine-tuning, checking for components’ size and placement, aiming symmetric medial and lateral gaps in flexion/extension. Cuts were adapted to radiographic epiphyseal anatomy and respecting ±2° boundaries from neutral coronal alignment. Robotic data were recorded, collecting information relative to medial and lateral gaps in flexion and extension. Results. Patients were divided based on the pre-operative coronal mechanical femoro-tibial angle (mFTA). Only knees with varus deformity (mFTA<178°), 29 cases, were taken into account. On average, the tibial component was placed at 1.2°±0.5 varus. Femoral component fine-tuning based on soft-tissues tensioning in extension and flexion determined the following alignments: 0.2°±1.2 varus on the coronal plane and 1.2°±2.2° external rotation with respect to the trans-epicondylar axis (TEA) as measured on the CT scan in the horizontal plane. The average gaps after femoral and tibial resections, resulted as follows: 19.5±0.8 mm on the medial side in extension, 20.0±0.9 mm on the lateral side in extension, 19.1±0.7 mm on the medial side in flexion and 19.5±0.7 mm on the lateral side in flexion. On average, the post-implant coronal alignment as reported by the robotic system resulted 2.0°±1.5 varus. Discussion. The proposed robotic-arm assisted TKA technique, aiming to preserve the integrity of the ligaments, provides balanced and symmetric gaps in flexion and extension and an anatomic femoral and tibial component's placement with post-implant coronal alignment within ±2° from neutral alignment


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 36 - 36
1 Feb 2020
Aframian A Auvinet E Iranpour F Barker T Barrett D
Full Access

Introduction. Gait analysis systems have enjoyed increasing usage and have been validated to provide highly accurate assessments for range of motion. Size, cost, need for marker placement and need for complex data processing have remained limiting factors in uptake outside of what remains predominantly large research institutions. Progress and advances in deep neural networks, trained on millions of clinically labelled datasets, have allowed the development of a computer vision system which enables assessment using a handheld smartphone with no markers and accurate range of motion for knee during flexion and extension. This allows clinicians and therapists to objectively track progress without the need for complex and expensive equipment or time-consuming analysis, which was concluded to be lacking during a recent systematic review of existing applications. Method. A smartphone based computer vision system was assessed for accuracy with a gold standard comparison using a validated ‘traditional’ infra-red motion capture system which had a defined calibrated accuracy of 0.1degrees. A total of 22 subjects were assessed simultaneously using both the computer vision smartphone application and the standard motion capture system. Assessment of the handheld system was made by comparison to the motion capture system for knee flexion and extension angles through a range of motion with a simulated fixed-flexion deformity which prevented full extension to assess the accuracy of the system, repeating movements ten times. The peak extension angles and also numerous discrete angle measurements were compared between the two systems. Repeatability was assessed by comparing several sequential cycles of flexion/extension and comparison of the maximum range of motion in normal knees and in those with a simulated fixed-flexion deformity. In addition, discrete angles were also measured on both legs of three cadavers with both skin and then bone implanted fiducial markers for ground truth reliability accounting for skin movement. Data was processed quickly through an automated secure cloud system. Results. The smartphone application was found to be accurate to 1.47±1.05 degrees through a full range of motion and 1.75±1.56 degrees when only peak extension angles were compared, demonstrating excellent reliability and repeatability. The cadaveric studies despite limitations which will be discussed still showed excellent accuracy with average errors as low as 0.29 degrees for individual angles and 4.09 degrees for an average error in several measurement. Conclusion. This novel solution offers for the first time a way to objectively measure knee range of motion using a markerless handheld device and enables tracking through a range of assessments with proven accuracy and reliability even accounting for traditional issues with the previous marker based systems. Repeatability for both computer vision and motion capture have greater extrinsic than intrinsic error, particularly with marker placement - another benefit of a markerless system. Clinical applications include pre-operative assessment and post-operative follow-up, paired with surgical planning (including with robots) and remote monitoring after knee surgery, with outcomes guiding treatment and rehabilitation and leading to reduced need for manipulation under anaesthesia and greater satisfaction


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_10 | Pages 119 - 119
1 Jun 2018
Berry D
Full Access

The moderator will lead a structured panel discussion that explores how to manage challenges commonly found in the multiply revised knee. Topics covered will include: (1) Exposure in the multiply operated knee (when to use quad snip, tibial tubercle osteotomy, other techniques); (2) Implant removal: Tips for removing stemmed implants; (3) Management of bone loss in multiply operated knees (metal cones/sleeves vs. structural allograft vs. particulate graft); (4) Level of constraint (when to use posterior stabilised, constrained condylar, and hinge) and management of instability in multiply operated knees; (5) Preferred management of infection in the multiply operated knee; (6) The extensor mechanism: Preferred deficient patellar bone management; Preferred extensor mechanism deficiency management; (7) When is it time to convert to a salvage procedure (i.e. fusion, resection arthroplasty, amputation)?; (8) Post-operative management: wound management; knee range of motion


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 103 - 103
1 Apr 2019
Eymir M Unver B Karatosun V
Full Access

Background. Total knee arthroplasty (TKA) is offered to patients who have end-stage knee osteoarthritis to reduce pain and improve functional performance. Knee edema and pain deteriorate the patients' outcomes after TKA at early period. By quantifying the patients' early outcome deficits and their potential relationships to edema and pain may assist in the design of in-patient rehabilitation programs. Objectives. The aim of this study was to investigate of the effect of knee swelling on early patients' outcomes after primary TKA. Design and Methods. The study group consisted of 61 patients (10 males, 51 females), who underwent primary TKR because of knee arthrosis were included in the study with mean age 65.2±9 years. Patients were evaluated regarding knee circumference (10 cm superior of midpoint of patella, midpoint of patella, 10 cm distal of midpoint of patella), pain (Numeric Pain Rating Scale (NPRS)), knee range of motion (ROM), the day of active straight leg raise, knee function score (Hospital for Special Surgery (HSS)), Functional activities were evaluated using the Iowa Level of Assistance Scale (ILAS) and walking speed was evaluated using the Iowa Ambulation Velocity Scale (IAVS). Results. There were moderate significant correlation between knee circumference (10 cm superior of midpoint of patella; r=0.328, p=0.001, midpoint of patella; r=0.310, p=0.002, 10 cm distal of midpoint of patella; r=0.300, p=0.003) and IAVS. While, significant low correlation was found between pain level and knee ROM (r=−0.272, p=0.008), there was strong significant correlation between pain level and HSS (r=0.866, p<0.001). There was not significant correlation between knee swelling and all the other measurement, and also between pain and all the other measurement (p>0.05). Conclusion. The moderate correlation between knee swelling and IVAS, low correlation between pain and knee ROM, and also strong correlation between pain and HSS suggests that improved postoperative knee swelling and pain could be important to enhance the potential benefits of TKA in early stage. With improvement in knee swelling and pain the patient may obtain good functional outcomes and knee score


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 158 - 158
1 Sep 2012
Sariali E Mouttet A CATONNE Y
Full Access

Introduction. A decrease of 15% in femoral off-set (FO) was reported to generate a weakness of the abductor muscle after THA, which may increase the risk of limping and dislocation. However, this value was defined under experimental conditions using a CYBEX machine, which does not correspond to daily life activities. To our best knowledge, there is no reported study about the effect of the FO alteration on the gait, following THA. Materials and Methods. To assess the functional consequences of an alteration in the FO, a prospective comparative study was carried out and it included patients who underwent THA for primary osteoarthritis. In order to select only patients with an isolated FO alteration, the three-dimensional hip anatomy was analysed preoperatively and post-operatively with CT-scans using HipPlan Software. Three groups were defined according to the FO alteration: 15% decrease, restored and 15% increase. The exclusion criteria were: the presence of an arthroplasty or of an associated pathology on the contra-lateral or the same limb, a spine disease and a non-restoration of the other hip parameters (center of rotation, limb length). 26 patients were included: 12 restored, 9 decreased FO and 5 increased FO. The patients were composed of 20 women and 6 men with an average age of 67.7 ± 9 years. All the patients were assessed clinically, pre-operatively and 1 year after surgery with 4 scores: the Poste Merle d'Aubigné score, the Harris score, the womac score and the quality of life score SF12. A gait analysis was performed at 1 year follow-up using an ambulatory device (Physilog (3)) under normal walking conditions. The patients were asked to walk at their usual normal speed for 30 metres in a standardized corridor: Each limb was compared to the contra-lateral healthy limb. Results. Contrarily to the restored and the increased groups, there was in the decreased group a significant asymmetry between the operated limb and the healthy side with a decreased knee range of motion (8°, p<0.004) and a lower maximal swing speed. (30°/s, p<0.01) (Figure). There was no significant difference in the clinical scores between the three groups. However, there was a significant decrease in hip adduction in the decreased FO group. Discussion. The main finding of this study was that an isolated decrease in FO after THA generated an alteration of the gait with a lower swing speed and a decreased knee range of motion when walking. A 15% decrease in FO was proved to induce a gait asymmetry in the sagittal plane. This should be kept in mind for THA planning because X-rays underestimate the FO of up to 20%. This is why; the authors use now routinely CT-scan in order to perform a three-dimensional pre-operative planning for THA. There was no significant difference between the groups regarding the clinical scores. These scores may be not adapted for an accurate clinical assessment after THA for young and active patients who have highly demanding physical activities


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_6 | Pages 12 - 12
1 May 2021
Elsheikh A Elsayed A Kandel W Nayagam S
Full Access

Introduction. Femoral shaft fractures in children is a serious injury that needs hospitalization, with a high prevalence in the age group 6–8 years old. Various treatment options are available and with a comparable weight of evidence. Submuscular plating provides a dependable solution, especially in length-unstable fractures and heavier kids. We present a novel technique to facilitate and control the reduction intraoperatively, which would allow for easier submuscular plate application. Materials and Methods. We have retrospectively reviewed four boys and three girls; all were operated in one centre. Polyaxial clamps and rods were applied to the sagittally-oriented bone screws, the reduction was done manually, and the clamps were tightened after achieving the proper alignment in the anteroposterior and lateral fluoroscopy views. The submuscular plate was applied as described, then clamps and bone screws were removed. Results. The mean age at surgery was 13 years (range, 9–14). The mean body weight was 43.3 kg (range, 30–66). There were five mid-shaft fractures, one proximal third and one distal third. There were Four type A fractures, two type B and one type C. Four patients had road traffic accidents while three had direct trauma. The mean preoperative haemoglobin concentration 12.5 g/dl (range 11.3–13 g/dl). No blood transfusion was needed intraoperatively or postoperatively. The operative time averaged 122 minutes, and the mean hospital stay was one (range 1–4 days). The patients reported no pain at a mean of 1.5 weeks (range, one-three weeks). All fractures united at a mean of 8.7 weeks (range 6–12 weeks). No wound healing problems nor deep infections happened. The knee joint range of motion was full in all patients at six weeks postoperatively. There was no mechanical irritation from the inserted plate. At the final follow-up, all fractures united without malalignment nor length discrepancy. Conclusions. External fixator-assisted internal fixation of pediatric femoral fractures would facilitate the accuracy and control of fracture reduction and allow minimally invasive percutaneous osteosynthesis. Our study has shown a decrease in operative time, and an accompanying reduction in length of inpatient stay, prolonged need for analgesia and post-operative rehabilitation


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_7 | Pages 114 - 114
1 Apr 2017
Berry D
Full Access

The moderator will lead a structured panel discussion that explores how to manage challenges commonly found in the multiply revised knee. Topics covered will include: (1) Exposure in the multiply operated knee (when to use quad snip, tibial tubercle osteotomy, other techniques); (2) Implant removal: Tips for removing stemmed implants; (3) Management of bone loss in multiply operated knees (metal cones/sleeves vs. structural allograft vs. particulate graft); (4) Level of constraint (when to use posterior stabilised, constrained condylar, and hinge) and management of instability in multiply operated knees; (3) Management of bone loss in multiply operated knees (metal cones/sleeves vs. structural allograft vs. particulate graft); (5) Preferred management of infection in the multiply operated knee; (6) The extensor mechanism: Preferred deficient patellar bone management; Preferred extensor mechanism deficiency management; (7) When is it time to convert to a salvage procedure (i.e. fusion, resection arthroplasty, amputation)?; (8) Post-operative management: wound management; knee range of motion


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_7 | Pages 103 - 103
1 Apr 2017
Mullaji A
Full Access

There is enough evidence to show that navigation improves precision of component placement and consistent and accurate restoration of limb alignment, allowing the surgeon to achieve the desired neutral or kinematic alignment. Computer-assisted TKA provides excellent information regarding gap equality and symmetry throughout the knee range of motion. Accurate soft-tissue balancing is facilitated by CAS. It allows precise, quantitative soft tissue release for deformities, especially in knees with severe flexion contractures and severe rigid varus and valgus deformities. It allows accurate restoration of joint line, and posterior femoral offset. Knee arthritis with complex extra-articular deformities and in-situ hardware can be tackled appropriately using computer navigation where conventional techniques may be inadequate. It also allows intra-articular correction for extra-articular deformities due to malunions and facilitates extra-articular correction in cases with severe extra-articular tibial deformities. In obese patients, where the alignment of the limb is difficult to assess, computer navigation improves accuracy and reduces the number of outliers. The ability to quantify the precise amount of bone cuts and soft tissue releases needed to equalise gaps and restore alignment, reduced blood loss, and reduced incidence of systemic emboli improves the safety of the procedure and hastens functional recovery of the patient. Recent evidence shows that the rate of revision especially in younger patients is reduced with navigation


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_6 | Pages 123 - 123
1 Mar 2017
Zhou K Zhou Z Chen Z Wang D Zeng W Pei F
Full Access

Purpose. The aim of this study was to compare the accuracy of limb alignment and component positioning after total knee arthroplasty(TKA) performed using fixed or individual distal femoral valgus correction angle(VCA)in valgus knees. Materials and Methods. One hundred and twenty-four patients were randomised to undergo TKA with either of the clinical baseline, radiological outcomes and subsequent outcome such as knee HSS scores, knee range of motion (ROM) and visual analogue scale (VAS) scores were assessed. Knees in the individual group (n=62) were performed with a tailored VCA. Knees in the fixed group (n=62) were performed utilizing a 4°VCA. Results. The distribution of distal femoral valgus cut angle used in the individual group range from 3° to 8°. There were statistically significant differences between groups in post-operative hip-knee-ankle angle (individual: 180.0°±3.8°; fixed: 178.5°±2.9°; P=0.00). 86.9% of patients in the individual group had a post-operative mechanical axis deviation within ± 3°compared to 70.7% in the fixed group (P = 0.03). Patients in the fixed group had a higher percentage of postoperative residual deformity than in the individual group, and this difference was statistically significant (p=0.03). No significant differences were observed between the groups in terms of femoral and component alignment except coronal femoral component angle (α), although the size of the difference was very small(individual: 90.12°±1.61°; fixed: 88.97°±2.50°), the difference was statistically significant (P=0.00). There were no differences in HSS scores, knee ROM, or VAS pain scores in the early phase after surgery between groups. Conclusions. This study demonstrated that the VCA in patients with knee valgus deformities are smaller than normal or varus knee. Individual VCA for distal femoral resection could enhance the accuracy of postoperative neutral limb alignment in the coronal plane. Both individual and fixed VCA place the components with the similar accuracy


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_2 | Pages 20 - 20
1 Jan 2016
Hada M Kaneko T Otani T Kono N Mochizuki Y Sunakawa T Ikegami H Musha Y
Full Access

A 51 years old female who experienced difficulty in gait ambulation due to secondary osteoarthritis of knee showed knee instability caused by paralysis associated with poliomyelitis and scoliosis. At the first medical examination, right knee range of motion was 0° to 90°, and spino malleolar distance (SMD) showed 72cm for the right leg, 78cm for the left leg, and the bilateral comparison of SMD indicated the leg length discrepancy of 6cm. The patient has a history of surgeries with an anterior – posterior instrument for the treatment of scoliosis, and with Langenskiöld method for the paralyzed right knee at the age of seventeen. The patient also experienced varus degeneration at the age of twenty seven, which was surgically treated with high tibial osteotomy. In this case, a reoperation of her right knee was performed due to the reoccurrence of the knee pain. Preoperative planning was performed using Patient-matched instrument (Signature; Biomet) which was created based on computed tomography data. Each part of osteotomy followed the resection guide by Signature, and a total knee arthroplasty was carried out using the Rotating Hinge Knee System (Zimmer, warsaw. Inc). Two week after the operation, the patient showed the ability to walk without any assistance, and has been in a good condition


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_3 | Pages 50 - 50
1 Jan 2016
Moo IH Pagkaliwagan EH Poon KB
Full Access

Interest in minimal-incision total knee arthroplasty (TKA) has increased in recent years. The advantages of minimally invasive techniques (MIS) used for TKA are faster functional recovery, shorter hospital stay and better early knee range of motion. It is known that the long-term outcome after TKA is related to component position and ligament balance. The smaller incision in MIS might be associated with increased risk of malalignment of components due to limited visualisation. Malalignment of implants in TKA has been associated with implant failure and poor long-term functional results. There is a lack of evidence in the literature that MIS can achieve the same results as the standard TKR approach in terms of component alignment precision. Seventy patients scheduled for a primary TKA were prospectively evaluated postoperatively with coronal and sagittal radiographic long limb films. Mini-midvastus approach was used for all TKA. There were no complications and the radiographic evaluation found no implant or limb malalignment, or signs of early loosening. We did not observe wound healing problems, fractures or implant notching. The mini-midvastus approach can reproduces the same accuracy in component positioning as the standard medial parapatellar approach. A precise operation technique and adequate visualisation of anatomical landmarks during implantation are the key points of success in mini-midvastus approach


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_3 | Pages 41 - 41
1 Feb 2017
Stoops K Spence S Widner M Bernasek T
Full Access

Background. Proper femoral component placement plays a key role in the success of a total knee replacement (TKR). Controversy exists on which technique should be used to ensure proper femoral component placement. This two-part study compares gap balancing (GB) and measured resection (MR) techniques used in TKR, investigating femoral component position and early clinical outcomes. Methods. Femoral component position was analyzed in 95 consecutive knees that underwent primary TKR. Both GB and MR cutting blocks from the same knee system were sequentially placed on the operative knee, marking the pin sits. A standardized photograph (Figure) was taken prior to making final femoral cuts. Relative rotation was determined based on measurements made from a commercially available software. Clinical comparison was made using 50 consecutive GB patients and 50 consecutive MR patients. Clinical outcome measures were Knee Society Scores (KSS), knee range of motion (ROM), functional ROM (FROM), tourniquet time, and patients having manipulations under anesthesia (MUA). Results. The GB technique resulted in relative external and internal rotation of the femoral component in 41% and 17% knees respectively. Forty 42% of knees had no relative rotation. Mean pre and 1 year post-operative knee ROM for the MR cohort was 116.4±14.3. °. and 115±12.9. °. respectively, with FROM of 103.0±17.2. °. The GB cohort had mean pre and 1 year post-operative knee ROM values of 113.9±10.8. °. and 116.8±13.6. °. respectively, with FROM of 96.0±22.5. °. Mean 1 year pain and function KSS in the MR cohort were 92.5±10.7 and 85.4±18.9. In the GB cohort, the mean 1 year KSS values were 95.7±6.7 and 84.9±19.58 for pain and function respectively. Clinical outcome measures were not statistically different. Conclusion. We found that the GB technique resulted in external rotation relative to the MR technique. Despite these intraoperative findings we found no significant clinical differences