It is known that the gait dynamics of elderly substantially differs from that of young people. However, it has not been well studied how this age-related gait dynamics affects the
Total knee arthroplasty (TKA) aims to alleviate pain and restore joint biomechanics to an equivalent degree to age-matched peers. Zimmer Biomet's Nexgen TKA was the most common implant in the UK between 2003 and 2016. This study compared the biomechanical outcomes of the Nexgen implant against a cohort of healthy older adults to determine whether
This study examined pre-operative measures to predict post-operative biomechanical outcomes in total knee arthroplasty (TKA) patients. Twenty-eight patients (female=12/male=16, age=63.6±6.9, BMI=29.9±7.4 kg/m2) with knee osteoarthritis scheduled to undergo TKA were included. All surgeries were performed by the same surgeon (GD) with a subvastus approach. Patients visited the gait lab within one-month prior to surgery and 12 months following surgery. At the gait lab, patients completed the knee injury and osteoarthritis outcome score (KOOS), a timed up and go (TUG), maximum knee flexion and extension strength evaluation, and a walking task. Variables of interest included the five KOOS sub-scores, TUG time, maximum knee flexion and extension strength normalized to body weight, walking speed, and peak
Introduction and Objective. Gait variability is the amplitude of the fluctuations in the time series with respect to the mean of kinematic (e.g., joint angles) or kinetic (e.g., joint moments) measurements. Although gait variability increases with normal ageing or pathological mechanisms, such as knee osteoarthritis (OA). The purpose was to determine if a patient who underwent a total knee arthroplasty (TKA) can reduce gait variability. Materials and Methods. Twenty-five patients awaiting TKA were randomly assigned to receive either medial pivot (MP, m=7/f=6, age=62.4±6.2 years) or posterior stabilized (PS, m=7/f=5, age=63.7±8.9 years) implants, and were compared to 13 controls (CTRL, m=7/f=6, age=63.9±4.3 years). All patients completed a gait analysis within one month prior and 12 months following surgery, CTRLs completed the protocol once. A waveform F-Test Method (WFM) was used to compare the variance in
Introduction. Understanding
Abstract. Objectives. Little is known about the impact of cartilage defects on
Knee osteoarthritis (OA) is a serious health concern, requiring novel therapeutic options. Walking mechanics has long been identified as an important factor in the OA process. Specially, a larger peak knee adduction moment during the first half of stance (KAM) has been associated with the progression of medial knee OA. Consequently, various gait interventions have been designed to reduce the KAM, including walking with a decreased foot progression angle (FPA). Other gait variables have recently been associated with medial knee OA progression, particularly a larger peak knee flexion moment during stance (KFM) and a larger knee flexion angle at heel-strike (KFA). Currently, there is a paucity of data regarding the effect of reducing the FPA on the KFM and KFA. This study aimed to test for correlations between the FPA and the KAM, KFM and KFA. It was hypothesized that reducing the FPA is beneficial with respect to these three OA-related gait variables. Seven healthy subjects participated in this study after providing informed consent (4 male; 24 ± 5 years old; 21.9 ± 1.5 kg/m^2). Their walking mechanics was determined using a validated procedure based on a camera-based system (Vicon) and floor-mounted forceplates (Kistler). Participants were first asked to walk without instructions and these initial trials were used to determine their normal footstep characteristics. Then, footsteps with the same characteristics as during the normal trials, except for the FPA, were displayed on the floor and participants were requested to walk following these footsteps. Nine trials with visual instructions were collected for each participant, corresponding to FPA modifications in the range ± 20° compared to the normal FPA, with 5° increment. For each participant, the associations between FPA and
INTRODUCTION. Useful feedback from a Total Knee Replacement (TKR) can be obtained from post-surgery in-vivo assessments. Dynamic Fluoroscopy and 3D model registration using the method of Banks and Hodge (1996) [1] can be used to measure TKR kinematics to within 1° of rotation and 0.5mm of translation, determine tibio-femoral contact locations and centre of rotation. This procedure also provides an accurate way of quantifying natural knee kinematics and involves registering 3D implant or bone models to a series of 2D fluoroscopic images of a dynamic movement. AIM. The aim of this study was to implement a methodology employing the registration methods of Banks and Hodge (1996) [1] to assess the function of different TKR design types and gain a greater understanding of non-pathological (NP)
BACKGROUND. High tibial Osteotomy (HTO) realigns the forces in the knee to slow the progression of osteoarthritis. This study relates the changes in
Preservation of both anterior and posterior cruciate ligaments in total knee arthroplasty (TKA) can lead to near-normal post-operative joint mechanics and improved knee function. We hypothesised that a patient-specific bicruciate-retaining prosthesis preserves near-normal kinematics better than standard off-the-shelf posterior cruciate-retaining and bicruciate-retaining prostheses in TKA. We developed the validated models to evaluate the post-operative kinematics in patient-specific bicruciate-retaining, standard off-the-shelf bicruciate-retaining and posterior cruciate-retaining TKA under gait and deep knee bend loading conditions using numerical simulation.Objectives
Methods