Aims. This study aimed to evaluate if total knee arthroplasty (TKA) femoral components aligned in either mechanical alignment (MA) or
Aims. Patient-specific instrumentation of total knee arthroplasty (TKA) is a technique permitting the targeting of individual
The
Aims. Alternative alignment concepts, including kinematic and restricted kinematic, have been introduced to help improve clinical outcomes following total knee arthroplasty (TKA). The purpose of this study was to evaluate the clinical results, along with patient satisfaction, following TKA using the concept of restricted
Aims. The mid-term results of
Even though primary total knee arthroplasty involves resurfacing the joint with metal and plastic it is much more of a soft tissue operation than it is a bony procedure. The idea that altering the planned bony resection by a few degrees on either the tibial or femoral side of the joint might somehow eliminate the multifactorial pain complaints and reduced patient satisfaction seen in some 20% or more of cases in reported clinical series is clearly overly optimistic. Axial alignment is important, but no more so than the level of distal femoral resection, tibial and femoral rotation, tibial resection level and downslope and femoral sagittal plane alignment. The real problem is that errors in component positioning are common, rarely made one at a time, and are made more common by greater procedural complexity. No matter the resection method (let alone the resection target!) errors are commonly linked and iterative. For example: femoral malrotation on an under-resected distal femur (in a knee with minimal arthritic wear to begin with) can contribute to corresponding tibial malrotation helped by a “floated” tibial trial on an all too often overly resected and downsloped tibial surface that has been recut to allow full extension with the under-resected femur (and now also results in AP laxity in flexion). Small changes in the alignment target will not fix this!. On the other hand:
Aims. The aims of this study were: 1) to describe extended restricted
Introduction. Most surgeons that have performed kinematically aligned TKA have noticed an overall better clinical outcome, better motion, better patient satisfaction, and a quicker recovery than their patients treated with mechanically aligned TKA. Materials and Methods. We prospectively followed all 128 knees who underwent primary total knee arthroplasty. The Lysholm knee score and VAS scale was recorded initially and 12months after the surgery. Independent T-test was used for statistical analysis at probability level of 95%. SPSS for Windows (Version 12, Chicago, Illinois) was used. Results. VAS score and passive ROM; Not significant difference statistically. But improved compared the preoperative and postoperative data. WOMAC score and HSS score; Significantly improved statistically. Discussion. Our data suggest that
Mechanical alignment (MA) techniques for total knee arthroplasty (TKA) introduces significant anatomic modifications and secondary ligament imbalances. A restricted
Purpose. Various alignment philosophies for total knee arthroplasty (TKA) have been described, all striving to achieve excellent long-term implant survival and good functional outcomes. In recent years, in search of higher functionality and patient satisfaction, a shift towards more patient-specific alignment is seen. Robotics is the perfect technology to tailor alignment. The purpose of this study was to describe ‘inverse
Inverse
Trochlear geometry of modern femoral implants is designed for mechanical alignment (MA) technique for TKA. The biomechanical goal is to create a proximalised and more valgus trochlea to better capture the patella and optimize tracking. In contrast,
BACKGROUND. Trochlear geometry of modern femoral implants is designed for the mechanical alignment (MA) technique for Total Knee Arthroplasty (TKA). The biomechanical goal is to create a proximalised and more valgus trochlea to better capture the patella and optimize tracking. In contrast,
BACKGROUND. Conventional TKA surgery attempts to restore patients to a neutral alignment, and devices are designed with this in mind. Neutral alignment may not be natural for many patients, and may cause dissatisfaction [1]. To solve this,
Conventional TKA surgery attempts to restore patients to a neutral alignment, and devices are designed with this in mind. Neutral alignment may not be natural for many patients, and may cause dissatisfaction. To solve this,
Background. Mechanical alignment (MA) techniques for total knee arthroplasty (TKA) introduce significant anatomic modifications and secondary ligament imbalances. A restricted
Tibial bone density may affect implant stability and functional outcomes following total knee replacement (TKR). Our aim was to characterise the bone density profile at the implant-tibia interface following TKR in mechanical versus
Objective. Kinematically aligned total knee arthroplasty (TKA) is of increasing interest because this method may improve patient satisfaction. However, the biomechanics of kinematically aligned TKA remain largely unknown. Therefore, we analyzed whether the
Background. Defining optimal coronal alignment in Total Knee Replacement (TKR) is a controversial and poorly understood subject. Tibial bone density may affect implant stability and functional outcomes following TKR. Our aim was to compare the bone density profile at the implant-tibia interface following TKR in mechanical versus