Advertisement for orthosearch.org.uk
Results 1 - 3 of 3
Results per page:
Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_14 | Pages 114 - 114
1 Nov 2018
Perale G Roato I Belisario D Compagno M Mussano F Genova T Veneziano F Pertici G Ferracini R
Full Access

Intra-articular infusions of adipose tissue-derived stem cells (ASCs) are a promising tool for bone regenerative medicine, thanks to their multilineage differentiating ability. One major limitation of ASCs is represented by the necessity to be isolated and expanded through in vitro culture, thus a strong interest was generated by the adipose stromal vascular fraction (SVF), the non-cultured fraction of ASCs. Besides the easiness of retrieval, handling and good availability, SVF is a heterogeneous population able to differentiate in vitro into osteoblasts, chondrocytes and adipocytes, according to the different stimuli received. We investigated and compared the bone regenerative potential of SVF and ASCs, through their ability to grow on SmartBone. ®. , a composite xenohybrid bone scaffold. SVF plated on SmartBone. ®. showed better osteoinductive capabilities than ASCs. Collagen I, osteocalcin and TGF↕ markedly stained the new tissue on SmartBone. ®. ; microCT analysis indicated a progressive increase in mineralised tissue apposition by quantification of newly formed trabeculae (3391 ± 270,5 vs 1825 ± 133,4, p± 0,001); an increased secretion of soluble factors stimulating osteoblasts, as VEGF (153,5 to 1278,1 pg/ml) and endothelin 1 (0,43 to 1,47 pg/ml), was detected over time. In conclusion, the usage of SVF, whose handling doesn't require manipulation in an in vitro culture, could definitively represent a benefit for a larger use in clinical applications. Our data strongly support an innovative idea for a bone regenerative medicine based on resorbable scaffold seeded with SVF, which will improve the precision of stem cells implant and the quality of new bone formation


Bone & Joint Research
Vol. 8, Issue 2 | Pages 41 - 48
1 Feb 2019
Busse P Vater C Stiehler M Nowotny J Kasten P Bretschneider H Goodman SB Gelinsky M Zwingenberger S

Objectives

Intra-articular injections of local anaesthetics (LA), glucocorticoids (GC), or hyaluronic acid (HA) are used to treat osteoarthritis (OA). Contrast agents (CA) are needed to prove successful intra-articular injection or aspiration, or to visualize articular structures dynamically during fluoroscopy. Tranexamic acid (TA) is used to control haemostasis and prevent excessive intra-articular bleeding. Despite their common usage, little is known about the cytotoxicity of common drugs injected into joints. Thus, the aim of our study was to investigate the effects of LA, GC, HA, CA, and TA on the viability of primary human chondrocytes and tenocytes in vitro.

Methods

Human chondrocytes and tenocytes were cultured in a medium with three different drug dilutions (1:2; 1:10; 1:100). The following drugs were used to investigate cytotoxicity: lidocaine hydrochloride 1%; bupivacaine 0.5%; triamcinolone acetonide; dexamethasone 21-palmitate; TA; iodine contrast media; HA; and distilled water. Normal saline served as a control. After an incubation period of 24 hours, cell numbers and morphology were assessed.


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 6 | Pages 814 - 820
1 Jun 2008
Chu CR Izzo NJ Coyle CH Papas NE Logar A

We have studied the effects of bupivacaine on human and bovine articular chondrocytes in vitro. Time-lapse confocal microscopy of human articular chondrocytes showed > 95% cellular death after exposure to 0.5% bupivacaine for 30 minutes. Human and bovine chondrocytes exposed to 0.25% bupivacaine had a time-dependent reduction in viability, with longer exposure times resulting in higher cytotoxicity. Cellular death continued even after removal of 0.25% bupivacaine. After exposure to 0.25% bupivacaine for 15 minutes, flow cytometry showed bovine chondrocyte viability to be 41% of saline control after seven days. After exposure to 0.125% bupivacaine for up to 60 minutes, the viability of both bovine and human chondrocytes was similar to that of control groups.

These data show that prolonged exposure 0.5% and 0.25% bupivacaine solutions are potentially chondrotoxic.