Advertisement for orthosearch.org.uk
Results 1 - 20 of 57
Results per page:
Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_7 | Pages 23 - 23
8 May 2024
Jayatilaka M Fisher A Fisher L Molloy A Mason L
Full Access

Introduction. The treatment of posterior malleolar fractures is developing. Mason and Molloy (Foot Ankle Int. 2017 Nov;38(11):1229-1235) identified only 49% of posterior malleolar rotational pilon type fractures had syndesmotic instabilities. This was against general thinking that fixation of such a fragment would stabilize the syndesmosis. Methods. We examined 10 cadaveric lower limbs that had been preserved for dissection at the Human Anatomy and Resource Centre at Liverpool University in a solution of formaldehyde. The lower limbs were carefully dissected to identify the ligamentous structures on the posterior aspect of the ankle. To compare the size to the rotational pilon posterior malleolar fracture (Mason and Molloy 2A and B) we gathered information from our posterior malleolar fracture database. 3D CT imaging was analysed using our department PACS system. Results. The PITFL insertion on the posterior aspect of the tibia is very large. The average size of insertion was 54.9×47.1mm across the posterior aspect of the tibia. Medially the PITFL blends into the sheath of tibialis posterior and laterally into the peroneal tendon sheath. 78 posterior lateral and 35 posterior medial fragments were measured. On average, the lateral to medial size of the posteromalleolar fragment was 24.5mm in the posterolateral fragment, and 43mm if there is a posteromedial fragment present also. The average distal to proximal size of the posterolateral fragment was 24.5mm and 18.5mm for the posteromedial fragment. Conclusion. The PITFL insertion on the tibia is broad. In comparison to the average size of the posterior malleolar fragments, the PITFL insertion is significantly bigger. Therefore, for a posterior malleolar fracture to cause posterior syndesmotic instability, a ligamentous injury will also have to occur. This explains the finding by Mason and Molloy that only 49% of type 2 injuries had a syndesmotic injury on testing


The Bone & Joint Journal
Vol. 100-B, Issue 8 | Pages 1054 - 1059
1 Aug 2018
Kelly C Harwood PJ Loughenbury PR Clancy JA Britten S

Aims. Anatomical atlases document classical safe corridors for the placement of transosseous fine wires through the calcaneum during circular frame external fixation. During this process, the posterior tibial neurovascular bundle (PTNVB) is placed at risk, though this has not been previously quantified. We describe a cadaveric study to investigate a safe technique for posterolateral to anteromedial fine wire insertion through the body of the calcaneum. Materials and Methods. A total of 20 embalmed cadaveric lower limbs were divided into two groups. Wires were inserted using two possible insertion points and at varying angles. In Group A, wires were inserted one-third along a line between the point of the heel and the tip of the lateral malleolus while in Group B, wires were inserted halfway along this line. Standard dissection techniques identified the structures at risk and the distance of wires from neurovascular structures was measured. The results from 19 limbs were subject to analysis. Results. In Group A, no wires pierced the PTNVB. Wires were inserted a median 22.3 mm (range 4.7 to 39.6) from the PTNVB; two wires (4%) passed within 5 mm. In Group B, 24 (46%) wires passed within 5 mm of the PTNVB, with 11 wires piercing it. The median distance of wires from the PTNVB was 5.5 mm (range 0 to 30). A Mann–Whitney U test showed that this was significantly closer than in Group A (Hodges–Lehmann shift, 14.06 mm; 95% confidence interval (CI) 10.52 to 16.88; p < 0.0001). In Group B, with an increased angle of insertion there was greater risk to the PTNVB (r. s.  = -0.80; p < 0.01). Conclusion. Insertion of wires using an entry point one-third along a line from the point of the heel to the tip of the lateral malleolus (Group A) appears to be the safer technique. An insertion angle of up to 30° to the coronal plane can be used without significant risk to the PTNVB. Insertion of wires halfway along a line from the point of the heel to the tip of the lateral malleolus (Group B) carried a significantly higher risk of injury to neurovascular structures and, if necessary, an angle of insertion parallel to the coronal plane should be used. Cite this article: Bone Joint J 2018;100-B:1054–9


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLIII | Pages 56 - 56
1 Sep 2012
McGlynn J Mullen M Pillai A Fogg Q Kumar CS
Full Access

Introduction. The exact action of the Peroneus Longus muscle on the foot is not fully understood. It is involved in a number of pathological processes like tendonitis, tenosynovitis, chronic rupture and neurological conditions. It is described as having a consistent insertion to the base of the first metatarsal, but there have also been reports of significant variations and additional slips. Our aim was to further clarify the anatomy of the main insertion of the Peroneus Longus tendon and to describe the site and frequency of other variable insertion slips. Methods and Materials. The course of the distal peroneus longus tendon and its variable insertion was dissected in 12 embalmed, cadaveric specimens. The surface area of the main insertion footprint and angle of insertion was measured using an Immersion Digital Microscribe and 3D mapping software. The site and frequency of the other insertion slips is also presented. Results. There was a consistent, main insertion to the infero-lateral aspect of the first metatarsal in all specimens. The only additional slip was to the medial cuneiform. This did not increase the total footprint. Discussion. The main footprint of the Peroneus Longus tendon is on the first metatarsal. There was an additional slip to the medial cuneiform in 33% of our specimens. Although we are unsure about the significance of this additional slip, we hope it will lead to a better understanding of the mechanism of action of this muscle and its role both in the normal and pathological foot


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_9 | Pages 21 - 21
16 May 2024
Morrell R Abas S Kakwani R Townshend D
Full Access

Background. The use of a knotless TightRope for the stabilisation of a syndesmotic injury is a well-recognised mode of fixation. It has been described that the device can be inserted using a “closed” technique. This presents a risk of saphenous nerve entrapment and post-operative pain. Aim. We aimed to establish the actual risk of injury to the Saphenous Nerve using a “closed” technique for the insertion of a TightRope. Method. 20 TightRopes were inserted into Fresh Frozen Cadavers. This was done using the senior authors preferred technique of divergent tightropes with the distal implant directed slightly anterior to the fibula-tibia axis and the proximal implant slightly posterior in order to simulate the greatest risk to the nerve. This was done under image Intensifier guidance to simulate an intraoperative environment. The medial side of the distal tibia was then dissected to directly record and measure the relationship of the TightRope to the Saphenous Nerve. Measurements were taken using digital calipers from the centre of the button on the medial side of the TightRope to the centre of the nerve at the point of closest proximity. Results. 12 TightRopes were found to exit posterior to the nerve, 7 anterior and 1 penetrated through the centre of the nerve. The mean distance from the centre of the button to the nerve was 6.99mm (range 0.72–14.52mm, standard deviation 4.33mm). In 9 of the 20 TightRopes, the nerve was found to be less than 5mm away. Conclusion. Our findings demonstrated that the risks of damaging or indeed entrapping the Saphenous nerve were high, and therefore we would advocate an open incision on the medial side with judicious exploration to ensure there is no damage to the medial neurological structures


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_9 | Pages 13 - 13
16 May 2024
Lambert L Davies M Mangwani J Molloy A Mason L
Full Access

Introduction. Anatomic reduction of talar body fractures is critical in restoring congruency to the talocrural joint. Previous studies have indicated a maximum of 25% talar body exposure without malleolar osteotomy. The aim of this study was to investigate the percentage talar body exposure when using the lateral transligamentous approach. Methods. The lateral transligamentous approach to the talus was undertaken in 10 fresh frozen cadaveric specimens by surgeons inexperienced in the approach, following demonstration of the technique. An incision was made on the anterolateral aspect of the ankle augmented by the removal of the anterior talofibular ligament (ATFL) and the calcaneofibular ligament (CFL) from their fibular insertions. A bone lever was then placed behind the lateral aspect of the talus and levered forward with the foot in equinus and inversion. The talus was disarticulated and high resolution images were taken of the talar dome surface. The images were overlain with a reproducible nine-grid division. Accessibility to each zone within the grid with a perpendicular surgical blade was documented. ImageJ software was used to calculate the surface area exposed with each approach. Results. The mean percentage area of talar dome available through the transligamentous approach was 77.3 % (95% confidence interval 73.3, 81.3). In all specimens the complete lateral talar process was accessible, along with the lateral and dorsomedial aspect of the talar neck. This approach gives complete access to Zones 1,2, 3,5 & 6 with partial access to Zones 4,8 & 9. Conclusion. The lateral transligamentous approach to the talus provides significantly greater access to the talar dome as compared to standard approaches. The residual surface area that is inaccessible with this approach is predominantly within Zone 4 and Zone 7, the posteromedial corner


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_11 | Pages 6 - 6
4 Jun 2024
Hussain S Cinar EN Baid M Acharya A
Full Access

Background. RHF nail is an important tool for simultaneous ankle and subtalar joint stabilisation +/− fusion. Straight and curved RHF nails are available to use, but both seem to endanger plantar structures, especially the lateral plantar artery and nerve and Baxter's nerve. There is a paucity of literature on the structures at risk with a straight RHF nail inserted along a line bisecting the heel pad and the second toe (after Stephenson et al). In this study, plantar structures ‘at risk’ were studied in relation to a straight nail inserted as above. Methods. Re-creating real-life conditions and strictly following the recommended surgical technique with regards to the incision and guide-wire placement, we inserted an Orthosolutions Oxbridge nail into the tibia across the ankle and subtalar joints in 6 cadaveric specimens. Tissue flaps were then raised to expose the heel plantar structures and studied their relation to the inserted nail. Results. The medial plantar artery and nerve were always more than 10mm away from the medial edge of the nail, while the Baxter nerve was a mean 14mm behind. The lateral plantar nerve was a mean 7mm medial to the nail, while the artery was a mean 2.3mm away with macroscopic injury in one specimen. The other structures ‘at risk’ were the plantar fascia and small foot muscles. Conclusion. Lateral plantar artery and nerve are the most vulnerable structures during straight RHF nailing. The risk to heel plantar structures could be mitigated by making incisions longer, blunt dissection down to bone, meticulous retraction of soft tissues and placement of the protection sleeve down to bone to prevent the entrapment of plantar structures during guide-wire placement, reaming and nail insertion


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_7 | Pages 18 - 18
8 May 2024
Keene D Alsousou J Harrison P Hulley P Wagland S Parsons S Thompson J O'Connor H Schlüssel M Dutton S Lamb S Willett K
Full Access

Background. Disability and slow return to sport and work after tendon rupture are major challenges. Platelet Rich Plasma (PRP) is an autologous supraphysiological concentration of platelets from whole blood that has demonstrated positive cellular and physiological effects on healing in laboratory conditions but evidence from adequately powered robust clinical trials is lacking. We aimed to determine the clinical efficacy of PRP for treatment of acute Achilles tendon rupture. Methods. In a placebo-controlled, participant- and assessor-blinded, trial at 19 NHS hospitals we randomly assigned 230 adults starting acute Achilles rupture non-surgical management to PRP injection or dry-needle insertion (placebo) to the rupture gap under local anaesthetic. Patients with confounding or contraindicated concurrent medical conditions were excluded. The primary outcome was muscle-tendon function, assessed by the limb symmetry index (LSI, uninjured limb/injured limb × 100, higher scores better) of the work (Joules) performed during the heel-rise endurance test at 24 weeks. Secondary outcomes were: Achilles Tendon Rupture Score (ATRS, 0–100, higher scores better), quality of life (SF-12), pain, and goal attainment. Trial registration: ISRCTN54992179. Results. Participants were aged mean 46 years and 57 (25%) were female. 103/114 (90%) of the PRP group and all (n=116) in the placebo group received allocated treatment. At 24 weeks, mean LSI was 34.4 for the PRP group and 38.8 for placebo (adjusted mean difference −4.4 95% CI −11.2 to 2.5, n=201) and ATRS was mean 65.2 PRP vs 65.8 (adjusted mean difference −0.6, 95% CI −4.9 to 3.7, n=224). There were no differences between groups in the other secondary outcomes. Conclusion. We found no evidence of PRP efficacy for improving muscle-tendon function or patient-reported recovery after acute Achilles tendon rupture. Our findings challenge the increasing global use of PRP for acute tendon injury and indicate that robust evaluations are required in other applications


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_12 | Pages 3 - 3
10 Jun 2024
Alsousou J Keene D Harrison P O'Connor H Wagland S Dutton S Hulley P Lamb S Willett K
Full Access

Background. The PATH-2 trial found no evidence of a benefit of Platelet Rich Plasma (PRP) injection versus a placebo after Achilles tendon rupture (ATR) at six-months. ATR often leave longer-term functional deficiencies beyond six-months. This study aim is to determine if PRP affect tendon functional outcomes at two-years after rupture. Study design. Randomised multi-centre two-arm parallel-group, participant- and assessor-blinded, superiority trial. Methods. Adults with acute ATR managed non-surgically were recruited in 19 UK hospitals from 2015 to 2019. Exclusions were insertion or musculotendinous injuries, leg injury or deformity, diabetes, haematological disorder, corticosteroids and anticoagulation therapy. Participants were randomised via an online system 1:1 to PRP or placebo. Primary outcome was Achilles Tendon Rupture Score (ATRS) at two-years. Secondary outcomes were pain, Patient-Specific Functional Scale (PSFS), SF-12 and re-rupture. Assessors were blinded. Intention-to-treat and Compliance Average Causal effects (CACE) analyses were carried out. Consistency of effects across subgroups age, BMI, smoking and gender were assessed using Forest plots. Pearson's correlation was used to explore ATRS correlation with blood and growth factors. Results. 216/230 (94%) participants completed the 6-months follow-up were contacted. 182/216 (84%) completed the two-year follow-up. Participants were aged mean 46 (SD 13.0), 57 female/159 male. 96% received the allocated intervention. Two-years ATRS scores were 82.2 (SD 18.3) in the PRP group (n=85) and 83.8 (SD 16.0) in the placebo group (n=92). There was no evidence of a difference in the two-years ATRS (adjusted-mean difference −0.752 95%CI −5.523 to 4.020, p=0.757), or in any secondary outcome, and no re-rupture between at two-years. Neither PRP cellular or growth factors correlated with the two-year ATRS. Conclusion. PRP did not improve patient-reported function or quality of life two-years after acute Achilles tendon rupture, compared with placebo, indicating that PRP offers no patient benefit in the longer term


The Bone & Joint Journal
Vol. 96-B, Issue 10 | Pages 1344 - 1348
1 Oct 2014
Ballal MS Walker CR Molloy AP

We dissected 12 fresh-frozen leg specimens to identify the insertional footprint of each fascicle of the Achilles tendon on the calcaneum in relation to their corresponding muscles. A further ten embalmed specimens were examined to confirm an observation on the retrocalcaneal bursa. The superficial part of the insertion of the Achilles tendon is represented by fascicles from the medial head of the gastrocnemius muscle, which is inserted over the entire width of the inferior facet of the calcaneal tuberosity. In three specimens this insertion was in continuity with the plantar fascia in the form of periosteum. The deep part of the insertion of the Achilles tendon is made of fascicles from the soleus tendon, which insert on the medial aspect of the middle facet of the calcaneal tuberosity, while the fascicles of the lateral head of the gastrocnemius tendon insert on the lateral aspect of the middle facet of the calcaneal tuberosity. A bicameral retrocalcaneal bursa was present in 15 of the 22 examined specimens. . This new observation and description of the insertional footprint of the Achilles tendon and the retrocalcaneal bursa may allow a better understanding of the function of each muscular part of the gastrosoleus complex. This may have clinical relevance in the treatment of Achilles tendinopathies. Cite this article: Bone Joint J 2014; 96-B:1344–8


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_17 | Pages 12 - 12
1 Nov 2014
Ballal M Walker C Molloy A
Full Access

Introduction:. The insertion footprint of the different muscles tendon fascicles of the Achilles Tendon on the calcanium tuberosity has not been described before. Method:. Twelve fresh frozen leg specimens were dissected to identify the different Achilles Tendon fascicles insertion footprint on the calcaneum in relation to their corresponding muscles. Further ten embalmed cadaveric leg specimens were examined to confirm an observation on the retrocalcaneal bursa. Results:. The superficial part of the AT insertion is made by tendon fascicles from the medial head of the gastrocnemius muscle which insert over the entire width of the inferior facet of the calcaneal tuberosity. In three specimens, this insertion had continuity with the plantar fascia in the form of periostium. The deep part of the TA insertion is made of fascicles from the soleus tendon which insert on the medial aspect of the middle facet of the calcaneal tuberosity while the lateral head of the gastrocnemius tendon fascicles insert on the lateral aspect of the middle facet of the calcaneal tuberosity. A bicameral retrocalcaneal bursa was present in 68% of examined legs. Conclusion:. This new observation and description of the Achilles insertion footprint and the retrocalcaneal bursa may allow a detailed understanding of the function of each muscular part of the gastrosoleous complex. This has potential significant clinical relevance in the treatment of Achilles pathologies around its insertion


Bone & Joint Open
Vol. 5, Issue 9 | Pages 799 - 805
24 Sep 2024
Fletcher WR Collins T Fox A Pillai A

Aims

The Cartiva synthetic cartilage implant (SCI) entered mainstream use in the management of first metatarsophalangeal joint (MTPJ) arthritis following the positive results of large trials in 2016. Limited information is available on the longer-term outcomes of this implant within the literature, particularly when independent from the originator. This single-centre cohort study investigates the efficacy of the Cartiva SCI at up to five years.

Methods

First MTPJ arthritis was radiologically graded according to the Hattrup and Johnson (HJ) classification. Preoperative and sequential postoperative patient-reported outcome measures (PROMs) were evaluated using the Manchester-Oxford Foot Questionnaire (MOXFQ), and the activities of daily living (ADL) sub-section of the Foot and Ankle Ability Measure (FAAM).


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_19 | Pages 22 - 22
1 Nov 2016
Humphrey J Hussain L Latif A Walker R Abbasian A Singh S
Full Access

Background. Previous studies have individually shown extracorporeal shockwave therapy (ESWT) to be beneficial for mid-substance Achilles tendinopathy, insertional Achilles tendinopathy or plantar fasciitis. The purpose of this pragmatic study was to determine the efficacy of ESWT in managing the three main causes of refractory heel pain in our routine clinical practice. Methods. 236 patients (261 feet) aged between 25 – 81 years (mean age 50.4) were treated in our NHS institute with ESWT between April 2014 and May 2016. They all underwent a clinical and radiological assessment (ultrasonography +/− magnetic resonance imaging) to determine the primary cause of heel pain. Patients were subsequently categorized into three groups, mid-substance Achilles tendinopathy (55 cases), insertional Achilles tendinopathy (55 cases) or plantar fasciitis (151 cases). If their symptoms were recalcitrant to compliant first line management for 6 months, they were prescribed three consecutive ESWT sessions at weekly intervals. All outcome measures (foot & ankle pain score, EQ-5D) were recorded at baseline and 3-month follow-up (mean 18.3 weeks, range 11.4 to 41). Results. Complete data sets were obtained for 41% of the ESWT treatments (107/261). EQ-5D scores showed a statistically significant improvement between baseline and follow-up in all three-treatment groups; mid-substance Achilles tendinopathy 0.681 to 0.734, insertional Achilles tendinopathy 0.687 to 0.742 and plantar fasciitis 0.684 to 0.731 (p< 0.05). The foot & ankle pain scores grouped for all causes of heel pain also showed a statistically significant reduction from 6.78 at baseline to 5.36 at follow-up (p< 0.05). Conclusion. Overall our results showed that ESWT is an effective tool for the management of all refractory heel pain in an NHS foot & ankle clinical practice


The Bone & Joint Journal
Vol. 95-B, Issue 10 | Pages 1299 - 1307
1 Oct 2013
Roche AJ Calder JDF

The two main categories of tendo Achillis tendon disorder are broadly classified by anatomical location to include non-insertional and insertional conditions. Non-insertional Achilles tendinopathy is often managed conservatively, and many rehabilitation protocols have been adapted and modified, with excellent clinical results. Emerging and popular alternative therapies, including a variety of injections and extracorporeal shockwave therapy, are often combined with rehabilitation protocols. Surgical approaches have developed, with minimally invasive procedures proving popular. The management of insertional Achilles tendinopathy is improved by recognising coexisting pathologies around the insertion. Conservative rehabilitation protocols as used in non-insertional disorders are thought to prove less successful, but such methods are being modified, with improving results. Treatment such as shockwave therapy is also proving successful. Surgical approaches specific to the diagnosis are constantly evolving, and good results have been achieved


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_2 | Pages 19 - 19
1 Jan 2014
Kelsall N Chapman A Sangar A Farrar M Taylor H
Full Access

Introduction:. The dorsal closing wedge calcaneal osteotomy has been described for the treatment of insertional pathology of the tendo-achilles. The aim of this study was to evaluate the efficacy of the technique using outcome measures. Method:. This was a prospective case series. Patients were included if they had tendo-achilles insertional pathology (calcific tendonitis, bursitis or Haglund's deformity). A short extended lateral approach was used and a 1 cm dorsally based closing wedge osteotomy of the calcaneus performed. Fixation was with 2 staples. Patients were scored pre-operatively and at 6 and 12 months post-operatively using the VISA-A and AOFAS ankle-hindfoot scores. Results were analysed with the paired student t-test. Results:. Twenty five feet in 23 patients were enrolled in the study February 2011 – May 2013. 22 patients underwent the osteotomy (9 males and 14 females). Average age was 47.2 years (range 19–62 years). 12 feet have been followed up for 1 year, 6 for 6 months, 5 less than 6 months. Average VISA-A improvement was 27.87 points (−13–71) at 6 months p=0.001 and 38 (−13–81) at 12 months p=0.001. Average AOFAS improvement was 11 points (−8–31) at 6 months p=0.005 and 11 (−18–42) at 12 months p=0.04. 82.3% of patients would have the procedure again. Complications included minor wound problems (3), sural nerve symptoms (1) and plantar fasciitis (3). All complications have resolved. Conclusion:. The results of this study show that the use of the Zadek osteotomy of the calcaneus can provide consistent symptomatic relief from insertional Achilles pathology by altering the biomechanics of the tendon without disrupting the bursa. There is a small risk of minor complications, which should be included in the consent process


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_21 | Pages 10 - 10
1 Apr 2013
Porter K Karia P Szarko M Amin A
Full Access

Introduction. Minimally invasive Achilles tendon repair has recently gained popularity amongst foot and ankle surgeons. This study aims to quantify the risk of sural nerve injury when using the Achillon device (Integra), as well as delineate its anatomical relationship to the Achilles tendon. Methods. In 15 cadaveric specimens, the Achilles tendon was transected through a 2cm transverse incision made 4cm proximal to the palpable Achilles tendon insertion point. The Achillon device was inserted beneath the paratenon both proximally and distally and six needle passers mounted with sutures were introduced percutaneously into the tendon (x3 proximal and x3 distal). We dissected around the Achillon jig to determine whether the needle and suture had punctured the sural nerve. We also documented the position of the sural nerve in relation to the Achilles tendon. Results. The mean horizontal distance from the Achilles tendon insertion to the sural nerve was 22.5mm (15.9mm–30.2mm). The mean vertical distance from the Achilles tendon insertion to the point where the sural nerve crosses the lateral border of the tendon was 96.1mm (77.4mm–134.9mm). In 4 out of 15 cadaveric specimens (27%) the sural nerve was punctured. In total, the sural nerve was punctured 6 times (twice in 2 specimens) in 90 needle passes (6.7%). Five out of the 6 punctures occurred when the Achillon device was inserted into the distal tendon portion with the most proximal hole being responsible for 3 of the punctures. Conclusions. The sural nerve displays a highly variable anatomical course and our findings highlight a significant risk of puncture during percutaneous Achilles tendon repair using the Achillon device. More studies are needed to clarify whether this risk equates to a significant clinical problem and whether a change in technique or instrumentation can decrease this risk


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_14 | Pages 5 - 5
1 Dec 2015
Collins R Loizou C Sudlow A Smith G
Full Access

Operative and non-operative treatment regimens for Achilles tendon ruptures vary greatly but commonly involve rigid casting or functional bracing. The aim of our study was to investigate the extent of tendon apposition following such treatments. Twelve fresh-frozen, adult below knee lower-extremity cadaveric specimens with intact proximal tibiofibular joints were used. Each was prepared by excising a 10cm × 5cm skin and soft tissue window exposing the Achilles tendon. With the ankle in neutral position, the tendon was transfixed with a 2mm k-wire into the tibia, 8cm from its calcaneal insertion. A typical post-rupture gap was created by excising a 2.5cm portion of tendon between 3.5cm and 6cm from its calcaneal insertion. The specimens were then placed into a low profile walker boot (SideKICK. TM. , Procare) without wedges and a window cut into the back. The distance between the proximal and distal Achilles tendon cut edges was measured and repeated with 1, 2 and 3 (10mm) wedges. Subsequently the specimens were placed into a complete below knee cast in full equinus which was also windowed. The Achilles tendon gap (mean +/− SD) measured: 2.7cm (0.5) with no wedge, 2.3cm (0.4) with 1, 2.0cm (0.4) with 2, 1.5cm (0.4) with 3 wedges and 0.4cm (0.3) in full equinus cast. The choice of treatment had a significant effect on tendon gap (p< 0.0001 – repeated measures ANOVA), and all pairwise comparisons were significantly different (Bonferroni), with all p< 0.001, apart from 0 wedge vs. 1 wedge (p< 0.01) and 1 wedge vs. 2 wedges (p< 0.05). Our results showed that each wedge apposed the tendon edges by approximately 0.5cm with the equinus cast achieving the best apposition. Surgeons should consider this when planning appropriate immobilisation regimes for Achilles tendon ruptures


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXII | Pages 2 - 2
1 May 2012
Haddad S
Full Access

Congenital hallux varus had been a well-described condition for many years before acquired hallux varus as a condition arising from bunion correction was not described until 1935. In that year, McBride discussed this potential problem when describing this as a potential problem from his described technique, identifying possible mechanisms to prevent the disorder from occurring. Authors such as Joplin and Kelikian echoed the concept in the early 1960's, spawning a series of corrective procedures. Miller brought this to common practice in 1975, describing the tendon imbalance seen across the precarious 1. st. MTP joint. The first metatarsophalangeal joint moves in the sagittal plane, dorsiflexion and plantarflexion only. Four intrinsic muscles stabilize the digit, with the abductor and adductor hallucis taking the lion share of this function. The abductor tendon actually functions primarily as a plantarflexor of the first metatarsophalangeal joint 83% of the time (Thompson) due to its primary plantar location. This fact, in combination with the pronation generally seen in severe bunion deformities, contributes to acquired hallux varus following bunion correction. Besides the obvious cause of over-correction of the metatarsal osteotomy creating hallux varus, imbalance of the tendon complex post-operatively can create an equally catastrophic circumstance. Hawkins demonstrated that severing the adductor tendon complex (the conjoined tendon) will not product hallux varus when the hallux is not rotated. However, in more severe hallux valgus, pronation of the hallux may be proportional to the deformity of the hallux itself. This rotational deformity places the insertions of the abductor (and medial insertion of the flexor brevis) more plantarward and lateral, increasing the valgus deformity. If the entire conjoined tendon is sectioned and the internal rotation deformity corrected the insertion of the contracted abductor moves medially, pulling the toe into varus. If the center of the base of the proximal phalanx is brought beyond the mid-point of the first metatarsal head, the extensor hallucis longus will bowstring, pulling the great toe into varus while creating a hallux flexus deformity. Finally, if the lesser toes are in varus and not corrected, this deforming force will create hallux varus following bunion correction with a lateral release. The message is clear: not all patients require a lateral release, and, if done, should be done with caution. Once present, correction can be difficult. Tendon transfers utilizing the extensor hallucis longus (Johnson) or extensor hallucis brevis (Myerson) only have beneficial effects in non-arthritic, mobile first metatarsophalangeal joints. In addition, if metatarsal deformity is not corrected, the deformity will recur. Thus, in many circumstances, arthrodesis of the first metatarsophalangeal joint becomes the treatment of choice, and is commensurate with a disappointed patient who underwent a primary bunion correction and was left with a fused great toe. This lecture will explore the above mechanism and salvage situations, in hopes of eliminating this unwelcomed outcome from your practice


Bone & Joint Open
Vol. 2, Issue 7 | Pages 503 - 508
8 Jul 2021
Callaghan CJ McKinley JC

Aims

Arthroplasty has become increasingly popular to treat end-stage ankle arthritis. Iatrogenic posterior neurovascular and tendinous injury have been described from saw cuts. However, it is hypothesized that posterior ankle structures could be damaged by inserting tibial guide pins too deeply and be a potential cause of residual hindfoot pain.

Methods

The preparation steps for ankle arthroplasty were performed using the Infinity total ankle system in five right-sided cadaveric ankles. All tibial guide pins were intentionally inserted past the posterior tibial cortex for assessment. All posterior ankles were subsequently dissected, with the primary endpoint being the presence of direct contact between the structure and pin.


The Bone & Joint Journal
Vol. 103-B, Issue 5 | Pages 931 - 938
1 May 2021
Liu Y Lu H Xu H Xie W Chen X Fu Z Zhang D Jiang B

Aims

The morphology of medial malleolar fracture is highly variable and difficult to characterize without 3D reconstruction. There is also no universally accepeted classification system. Thus, we aimed to characterize fracture patterns of the medial malleolus and propose a classification scheme based on 3D CT reconstruction.

Methods

We retrospectively reviewed 537 consecutive cases of ankle fractures involving the medial malleolus treated in our institution. 3D fracture maps were produced by superimposing all the fracture lines onto a standard template. We sliced fracture fragments and the standard template based on selected sagittal and coronal planes to create 2D fracture maps, where angles α and β were measured. Angles α and β were defined as the acute angles formed by the fracture line and the horizontal line on the selected planes.


The Bone & Joint Journal
Vol. 102-B, Issue 11 | Pages 1535 - 1541
1 Nov 2020
Yassin M Myatt R Thomas W Gupta V Hoque T Mahadevan D

Aims

Functional rehabilitation has become an increasingly popular treatment for Achilles tendon rupture (ATR), providing comparably low re-rupture rates to surgery, while avoiding risks of surgical complications. Limited evidence exists on whether gap size should affect patient selection for this treatment option. The aim of this study was to assess if size of gap between ruptured tendon ends affects patient-reported outcome following ATR treated with functional rehabilitation.

Methods

Analysis of prospectively collected data on all 131 patients diagnosed with ATR at Royal Berkshire Hospital, UK, from August 2016 to January 2019 and managed non-operatively was performed. Diagnosis was confirmed on all patients by dynamic ultrasound scanning and gap size measured with ankle in full plantarflexion. Functional rehabilitation using an established protocol was the preferred treatment. All non-operatively treated patients with completed Achilles Tendon Rupture Scores (ATRS) at a minimum of 12 months following injury were included.